Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

CRISPR/Cas9-modified hematopoietic stem cells—present and future perspectives for stem cell transplantation

Abstract

Allogeneic hematopoietic stem cell transplantation (HSCT) is a standard therapeutic intervention for hematological malignancies and several monogenic diseases. However, this approach has limitations related to lack of a suitable donor, graft-versus-host disease and infectious complications due to immune suppression. On the contrary, autologous HSCT diminishes the negative effects of allogeneic HSCT. Despite the good efficacy, earlier gene therapy trials with autologous HSCs and viral vectors have raised serious safety concerns. However, the CRISPR/Cas9-edited autologous HSCs have been proposed to be an alternative option with a high safety profile. In this review, we summarized the possibility of CRISPR/Cas9-mediated autologous HSCT as a potential treatment option for various diseases supported by preclinical gene-editing studies. Furthermore, we discussed future clinical perspectives and possible clinical grade improvements of CRISPR/cas9-mediated autologous HSCT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Qian L, Wu Z, Shen J. Advances in the treatment of acute graft-versus-host disease. J Cell Mol Med. 2013;17:966–75. https://doi.org/10.1111/jcmm.12093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Barriga F, Ramírez P, Wietstruck A, Rojas N. Hematopoietic stem cell transplantation: clinical use and perspectives. Biol Res. 2012;45:307–16.

    Article  PubMed  Google Scholar 

  3. Majhail NS, Farnia SH, Carpenter PA, Champlin RE, Crawford S, Marks DI, et al. Indications for autologous and allogeneic hematopoietic cell transplantation: guidelines from the american society for blood and marrow transplantation. Biol Blood Marrow Transplant. 2015;21:1863–9. https://doi.org/10.1016/j.bbmt.2015.07.032.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Welniak LA, Blazar BR, Murphy WJ. Immunobiology of allogeneic hematopoietic stem cell transplantation. Annu Rev Immunol. 2007;25:139–70. https://doi.org/10.1146/annurev.immunol.25.022106.141606.

    Article  CAS  PubMed  Google Scholar 

  5. Norkin M, Wingard JR. Recent advances in hematopoietic stem cell transplantation. F1000Res. 2017;6:870. https://doi.org/10.12688/f1000research.11233.1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ballen KK, Koreth J, Chen YB, Dey BR, Spitzer TR. Selection of optimal alternative graft source: mismatched unrelated donor, umbilical cord blood, or haploidentical transplant. Blood. 2012;119:1972–80. https://doi.org/10.1182/blood-2011-11-354563.

    Article  CAS  PubMed  Google Scholar 

  7. Gragert L, Eapen M, Williams E, Freeman J, Spellman S, Baitty R, et al. HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. registry. N Engl J Med. 2014;371:339–48. https://doi.org/10.1056/NEJMsa1311707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kohne E. Hemoglobinopathies: clinical manifestations, diagnosis, and treatment. Dtsch Arztebl Int. 2011;108:532–40. https://doi.org/10.3238/arztebl.2011.0532.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jagasia M, Arora M, Flowers ME, Chao NJ, McCarthy PL, Cutler CS, et al. Risk factors for acute GVHD and survival after hematopoietic cell transplantation. Blood. 2012;119:296–307. https://doi.org/10.1182/blood-2011-06-364265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee SE, Cho BS, Kim JH, Yoon JH, Shin SH, Yahng SA, et al. Risk and prognostic factors for acute GVHD based on NIH consensus criteria. Bone Marrow Transplant. 2013;48:587–92. https://doi.org/10.1038/bmt.2012.187.

    Article  PubMed  Google Scholar 

  11. Psatha N, Karponi G, Yannaki E. Optimizing autologous cell grafts to improve stem cell gene therapy. Exp Hematol. 2016;44:528–39. https://doi.org/10.1016/j.exphem.2016.04.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Henig I, Zuckerman T. Hematopoietic stem cell transplantation-50 years of evolution and future perspectives. Rambam Maimonides Med J. 2014;5:e0028. https://doi.org/10.5041/RMMJ.10162.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Groeschel S, Kuhl JS, Bley AE, Kehrer C, Weschke B, Doring M, et al. Long-term outcome of allogeneic hematopoietic stem cell transplantation in patients with juvenile metachromatic leukodystrophy compared with nontransplanted control patients. JAMA Neurol. 2016;73:1133–40. https://doi.org/10.1001/jamaneurol.2016.2067.

    Article  PubMed  Google Scholar 

  14. Sessa M, Lorioli L, Fumagalli F, Acquati S, Redaelli D, Baldoli C, et al. Lentiviral haemopoietic stem-cell gene therapy in early-onset metachromatic leukodystrophy: an ad-hoc analysis of a non-randomised, open-label, phase 1/2 trial. Lancet. 2016;388:476–87. https://doi.org/10.1016/S0140-6736(16)30374-9.

    Article  CAS  PubMed  Google Scholar 

  15. De Ravin SS, Reik A, Liu PQ, Li L, Wu X, Su L, et al. Targeted gene addition in human CD34(+) hematopoietic cells for correction of X-linked chronic granulomatous disease. Nat Biotechnol. 2016;34:424–9. https://doi.org/10.1038/nbt.3513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Eichler F, Duncan C, Musolino PL, Orchard PJ, De Oliveira S, Thrasher AJ, et al. Hematopoietic stem-cell gene therapy for cerebral adrenoleukodystrophy. N Engl J Med. 2017;377:1630–8. https://doi.org/10.1056/NEJMoa1700554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Negre O, Eggimann AV, Beuzard Y, Ribeil JA, Bourget P, Borwornpinyo S, et al. Gene therapy of the beta-Hemoglobinopathies by Lentiviral Transfer of the beta(A(T87Q))-Globin Gene. Hum Gene Ther. 2016;27:148–65. https://doi.org/10.1089/hum.2016.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Braun CJ, Boztug K, Paruzynski A, Witzel M, Schwarzer A, Rothe M, et al. Gene therapy for Wiskott-Aldrich syndrome--long-term efficacy and genotoxicity. Sci Transl Med. 2014;6:227ra233. https://doi.org/10.1126/scitranslmed.3007280.

    Article  CAS  Google Scholar 

  19. Ott MG, Schmidt M, Schwarzwaelder K, Stein S, Siler U, Koehl U, et al. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med. 2006;12:401–9. https://doi.org/10.1038/nm1393.

    Article  CAS  PubMed  Google Scholar 

  20. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003;302:415–9. https://doi.org/10.1126/science.1088547.

    Article  CAS  PubMed  Google Scholar 

  21. Woods NB, Bottero V, Schmidt M, von Kalle C, Verma IM. Gene therapy: therapeutic gene causing lymphoma. Nature. 2006;440:1123. https://doi.org/10.1038/4401123a.

    Article  CAS  PubMed  Google Scholar 

  22. Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K, Fusil F, et al. Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia. Nature. 2010;467:318–22. https://doi.org/10.1038/nature09328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zonari E, Desantis G, Petrillo C, Boccalatte FE, Lidonnici MR, Kajaste-Rudnitski A, et al. Efficient ex vivo engineering and expansion of highly purified human hematopoietic stem and progenitor cell populations for gene therapy. Stem Cell Rep. 2017;8:977–90. https://doi.org/10.1016/j.stemcr.2017.02.010.

    Article  CAS  Google Scholar 

  24. Antony JS, Haque AKMA, Lamsfus-Calle A, Daniel-Moreno A, Mezger M, Kormann MSD. CRISPR/Cas9system: a promising technology for the treatment of inherited and neoplastic hematological diseases. Adv Cell Gene Ther. 2018;1:e10. https://doi.org/10.1002/acg2.10.

    Article  CAS  Google Scholar 

  25. Gutierrez-Guerrero A, Sanchez-Hernandez S, Galvani G, Pinedo-Gomez J, Martin-Guerra R, Sanchez-Gilabert A, et al. Comparison of zinc finger nucleases versus CRISPR-specific nucleases for genome editing of the Wiskott-Aldrich Syndrome locus. Hum Gene Ther. 2018;29:366–80. https://doi.org/10.1089/hum.2017.047.

    Article  CAS  PubMed  Google Scholar 

  26. Fan Y, Chan JKY. Editing the genome ex vivo stem cell therapy. Curr Stem Cell Rep. 2018;4:338–45. https://doi.org/10.1007/s40778-018-0148-2.

    Article  Google Scholar 

  27. Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. 2014;32:347–55. https://doi.org/10.1038/nbt.2842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chandrakasan S, Malik P. Gene therapy for hemoglobinopathies: the state of the field and the future. Hematol Oncol Clin North Am. 2014;28:199–216. https://doi.org/10.1016/j.hoc.2013.12.003.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Thein SL. The molecular basis of beta-thalassemia. Cold Spring Harb Perspect Med. 2013;3:a011700. https://doi.org/10.1101/cshperspect.a011700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nienhuis AW, Nathan DG. Pathophysiology and clinical manifestations of the beta-thalassemias. Cold Spring Harb Perspect Med. 2012;2:a011726. https://doi.org/10.1101/cshperspect.a011726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Olivieri NF, Weatherall DJ. The therapeutic reactivation of fetal haemoglobin. Hum Mol Genet. 1998;7:1655–8.

    Article  CAS  PubMed  Google Scholar 

  32. May C, Rivella S, Callegari J, Heller G, Gaensler KM, Luzzatto L, et al. Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin. Nature. 2000;406:82–86. https://doi.org/10.1038/35017565.

    Article  CAS  PubMed  Google Scholar 

  33. Thompson AA, Walters MC, Kwiatkowski J, Rasko JEJ, Ribeil JA, Hongeng S, et al. Gene therapy in patients with transfusion-dependent beta-thalassemia. N Engl J Med. 2018;378:1479–93. https://doi.org/10.1056/NEJMoa1705342.

    Article  CAS  PubMed  Google Scholar 

  34. Dever DP, Bak RO, Reinisch A, Camarena J, Washington G, Nicolas CE, et al. CRISPR/Cas9 beta-globin gene targeting in human haematopoietic stem cells. Nature. 2016;539:384–9. https://doi.org/10.1038/nature20134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hoban MD, Lumaquin D, Kuo CY, Romero Z, Long J, Ho M, et al. CRISPR/Cas9-mediated correction of the sickle mutation in human CD34 + cells. Mol Ther. 2016;24:1561–9. https://doi.org/10.1038/mt.2016.148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. DeWitt MA, Magis W, Bray NL, Wang T, Berman JR, Urbinati F, et al. Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Sci Transl Med. 2016;8:360ra134. https://doi.org/10.1126/scitranslmed.aaf9336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Antony JS, Latifi N, Haque A, Lamsfus-Calle A, Daniel-Moreno A, Graeter S, et al. Gene correction of HBB mutations in CD34( + ) hematopoietic stem cells using Cas9 mRNA and ssODN donors. Mol Cell Pediatr. 2018;5:9. https://doi.org/10.1186/s40348-018-0086-1.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Vakulskas CA, Dever DP, Rettig GR, Turk R, Jacobi AM, Collingwood MA, et al. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat Med. 2018;24:1216–24. https://doi.org/10.1038/s41591-018-0137-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu Y, Yang Y, Kang X, Lin B, Yu Q, Song B, et al. One-step biallelic and scarless correction of a beta-thalassemia mutation in patient-specific iPSCs without drug selection. Mol Ther Nucleic Acids. 2017;6:57–67. https://doi.org/10.1016/j.omtn.2016.11.010.

    Article  CAS  PubMed  Google Scholar 

  40. Magis W, DeWitt MA, Wyman SK, Vu JT, Heo S-J, Shao SJ, et al. In vivo selection for corrected β-globin alleles after CRISPR/Cas9 editing in human sickle hematopoietic stem cells enhances therapeutic potential. bioRxiv 2018:432716. https://doi.org/10.1101/432716.

  41. Cai L, Bai H, Mahairaki V, Gao Y, He C, Wen Y, et al. A universal approach to correct various HBB gene mutations in human stem cells for gene therapy of beta-thalassemia and sickle cell disease. Stem Cells Transl Med. 2018;7:87–97. https://doi.org/10.1002/sctm.17-0066.

    Article  CAS  PubMed  Google Scholar 

  42. Miyaoka Y, Berman JR, Cooper SB, Mayerl SJ, Chan AH, Zhang B, et al. Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing. Sci Rep. 2016;6:23549. https://doi.org/10.1038/srep23549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bauer DE, Kamran SC, Orkin SH. Reawakening fetal hemoglobin: prospects for new therapies for the beta-globin disorders. Blood. 2012;120:2945–53. https://doi.org/10.1182/blood-2012-06-292078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Traxler EA, Yao Y, Wang YD, Woodard KJ, Kurita R, Nakamura Y, et al. A genome-editing strategy to treat beta-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition. Nat Med. 2016;22:987–90. https://doi.org/10.1038/nm.4170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Martyn GE, Wienert B, Yang L, Shah M, Norton LJ, Burdach J, et al. Natural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding. Nat Genet. 2018;50:498–503. https://doi.org/10.1038/s41588-018-0085-0.

    Article  CAS  PubMed  Google Scholar 

  46. Canver MC, Smith EC, Sher F, Pinello L, Sanjana NE, Shalem O, et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature. 2015;527:192. https://doi.org/10.1038/nature15521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Antoniani C, Meneghini V, Lattanzi A, Felix T, Romano O, Magrin E, et al. Induction of fetal hemoglobin synthesis by CRISPR/Cas9-mediated editing of the human beta-globin locus. Blood. 2018;131:1960–73. https://doi.org/10.1182/blood-2017-10-811505.

    Article  CAS  PubMed  Google Scholar 

  48. Ye L, Wang J, Tan Y, Beyer AI, Xie F, Muench MO, et al. Genome editing using CRISPR-Cas9 to create the HPFH genotype in HSPCs: An approach for treating sickle cell disease and β-thalassemia. Proc Natl Acad Sci. 2016;113:10661–5. https://doi.org/10.1073/pnas.1612075113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hacein-Bey Abina S, Gaspar HB, Blondeau J, Caccavelli L, Charrier S, Buckland K, et al. Outcomes following gene therapy in patients with severe Wiskott-Aldrich syndrome. JAMA. 2015;313:1550–63. https://doi.org/10.1001/jama.2015.3253.

    Article  CAS  PubMed  Google Scholar 

  50. Candotti F. Advances of gene therapy for primary immunodeficiencies. F1000Res 2016;5. https://doi.org/10.12688/f1000research.7512.1.

    Article  Google Scholar 

  51. Alzubi J, Pallant C, Mussolino C, Howe SJ, Thrasher AJ, Cathomen T. Targeted genome editing restores T cell differentiation in a humanized X-SCID pluripotent stem cell disease model. Sci Rep. 2017;7:12475. https://doi.org/10.1038/s41598-017-12750-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hacein-Bey-Abina S, Pai SY, Gaspar HB, Armant M, Berry CC, Blanche S, et al. A modified gamma-retrovirus vector for X-linked severe combined immunodeficiency. N Engl J Med. 2014;371:1407–17. https://doi.org/10.1056/NEJMoa1404588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Genovese P, Schiroli G, Escobar G, Tomaso TD, Firrito C, Calabria A, et al. Targeted genome editing in human repopulating haematopoietic stem cells. Nature. 2014;510:235–40. https://doi.org/10.1038/nature13420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lombardo A, Genovese P, Beausejour CM, Colleoni S, Lee YL, Kim KA, et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol. 2007;25:1298–306. https://doi.org/10.1038/nbt1353.

    Article  CAS  PubMed  Google Scholar 

  55. Chang CW, Lai YS, Westin E, Khodadadi-Jamayran A, Pawlik KM, Lamb LS Jr., et al. Modeling human severe combined immunodeficiency and correction by CRISPR/Cas9-enhanced gene targeting. Cell Rep. 2015;12:1668–77. https://doi.org/10.1016/j.celrep.2015.08.013.

    Article  CAS  PubMed  Google Scholar 

  56. Schiroli G, Ferrari S, Conway A, Jacob A, Capo V, Albano L, et al. Preclinical modeling highlights the therapeutic potential of hematopoietic stem cell gene editing for correction of SCID-X1. Sci Transl Med. 2017;9. https://doi.org/10.1126/scitranslmed.aan0820.

    Article  PubMed  Google Scholar 

  57. Roth TL, Puig-Saus C, Yu R, Shifrut E, Carnevale J, Li PJ, et al. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature. 2018;559:405–9. https://doi.org/10.1038/s41586-018-0326-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Almasbak H, Aarvak T, Vemuri MC. CAR T cell therapy: a game changer in cancer treatment. J Immunol Res. 2016;2016:5474602. https://doi.org/10.1155/2016/5474602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Carpenito C, Milone MC, Hassan R, Simonet JC, Lakhal M, Suhoski MM, et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci USA. 2009;106:3360–5. https://doi.org/10.1073/pnas.0813101106.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Liu X, Zhang Y, Cheng C, Cheng AW, Zhang X, Li N, et al. CRISPR-Cas9-mediated multiplex gene editing in CAR-T cells. Cell Res. 2017;27:154–7. https://doi.org/10.1038/cr.2016.142.

    Article  CAS  PubMed  Google Scholar 

  61. Qasim W, Zhan H, Samarasinghe S, Adams S, Amrolia P, Stafford S, et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci Transl Med. 2017;9. https://doi.org/10.1126/scitranslmed.aaj2013.

    Article  PubMed  Google Scholar 

  62. Kim MY, Yu KR, Kenderian SS, Ruella M, Chen S, Shin TH, et al. Genetic inactivation of CD33 in hematopoietic stem cells to enable CAR T cell immunotherapy for acute myeloid leukemia. Cell. 2018;173:1439–53 e1419. https://doi.org/10.1016/j.cell.2018.05.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res. 2017;23:2255–66. https://doi.org/10.1158/1078-0432.CCR-16-1300.

    Article  CAS  PubMed  Google Scholar 

  64. Eyquem J, Mansilla-Soto J, Giavridis T, van der Stegen SJ, Hamieh M, Cunanan KM, et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature. 2017;543:113–7. https://doi.org/10.1038/nature21405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sather BD, Romano Ibarra GS, Sommer K, Curinga G, Hale M, Khan IF, et al. Efficient modification of CCR5 in primary human hematopoietic cells using a megaTAL nuclease and AAV donor template. Sci Transl Med. 2015;7:307ra156. https://doi.org/10.1126/scitranslmed.aac5530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gschweng E, De Oliveira S, Kohn DB. Hematopoietic stem cells for cancer immunotherapy. Immunol Rev. 2014;257:237–49. https://doi.org/10.1111/imr.12128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bortin MM, Bach FH, van Bekkum DW, Good RA, van Rood JJ. 25th anniversary of the first successful allogeneic bone marrow transplants. Bone Marrow Transplant. 1994;14:211–2.

    CAS  PubMed  Google Scholar 

  68. Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. 2014;370:901–10. https://doi.org/10.1056/NEJMoa1300662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Serbina NV, Jia T, Hohl TM, Pamer EG. Monocyte-mediated defense against microbial pathogens. Annu Rev Immunol. 2008;26:421–52. https://doi.org/10.1146/annurev.immunol.26.021607.090326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gurung P, Kanneganti TD. Autoinflammatory skin disorders: the inflammasomme in focus. Trends Mol Med. 2016;22:545–64. https://doi.org/10.1016/j.molmed.2016.05.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Beer HD, Contassot E, French LE. The inflammasomes in autoinflammatory diseases with skin involvement. J Invest Dermatol. 2014;134:1805–10. https://doi.org/10.1038/jid.2014.76.

    Article  CAS  PubMed  Google Scholar 

  72. Sand J, Haertel E, Biedermann T, Contassot E, Reichmann E, French LE, et al. Expression of inflammasome proteins and inflammasome activation occurs in human, but not in murine keratinocytes. Cell Death & Dis. 2018;9:24. https://doi.org/10.1038/s41419-017-0009-4.

    Article  CAS  Google Scholar 

  73. Bruscia EM, Bonfield TL. Cystic fibrosis lung immunity: the role of the macrophage. J Innate Immun. 2016;8:550–63. https://doi.org/10.1159/000446825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pohl K, Hayes E, Keenan J, Henry M, Meleady P, Molloy K, et al. A neutrophil intrinsic impairment affecting Rab27a and degranulation in cystic fibrosis is corrected by CFTR potentiator therapy. Blood. 2014;124:999–1009. https://doi.org/10.1182/blood-2014-02-555268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Laval J, Ralhan A, Hartl D. Neutrophils in cystic fibrosis. Biol Chem. 2016;397:485–96. https://doi.org/10.1515/hsz-2015-0271.

    Article  CAS  PubMed  Google Scholar 

  76. Yin H, Song CQ, Suresh S, Kwan SY, Wu Q, Walsh S, et al. Partial DNA-guided Cas9 enables genome editing with reduced off-target activity. Nat Chem Biol. 2018;14:311–6. https://doi.org/10.1038/nchembio.2559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nasri M, Mir P, Dannenmann B, Amend D, Skroblyn T, Xu Y, et al. Fluorescent labeling of CRISPR/Cas9 RNP for gene knockout in HSPCs and iPSCs reveals an essential role for GADD45b in stress response. Blood Adv. 2019;3:63–71. https://doi.org/10.1182/bloodadvances.2017015511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hamilton N, Sabroe I, Renshaw SA. A method for transplantation of human HSCs into zebrafish, to replace humanised murine transplantation models. F1000Res. 2018;7:594. https://doi.org/10.12688/f1000research.14507.2.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wang J, Exline CM, DeClercq JJ, Llewellyn GN, Hayward SB, Li PW, et al. Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors. Nat Biotechnol. 2015;33:1256–63. https://doi.org/10.1038/nbt.3408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Morgan RA, Gray D, Lomova A, Kohn DB. Hematopoietic stem cell gene therapy: progress and lessons learned. Cell Stem Cell. 2017;21:574–90. https://doi.org/10.1016/j.stem.2017.10.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cleyrat C, Girard R, Choi EH, Jeziorski E, Lavabre-Bertrand T, Hermouet S, et al. Gene editing rescue of a novel MPL mutant associated with congenital amegakaryocytic thrombocytopenia. Blood Adv. 2017;1:1815–26. https://doi.org/10.1182/bloodadvances.2016002915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Diez B, Genovese P, Roman-Rodriguez FJ, Alvarez L, Schiroli G, Ugalde L, et al. Therapeutic gene editing in CD34( + ) hematopoietic progenitors from Fanconi anemia patients. EMBO Mol Med. 2017;9:1574–88. https://doi.org/10.15252/emmm.201707540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Li SJ, Luo Y, Zhang LM, Yang W, Zhang GG. Targeted introduction and effective expression of hFIX at the AAVS1 locus in mesenchymal stem cells. Mol Med Rep. 2017;15:1313–8. https://doi.org/10.3892/mmr.2017.6131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ohmori T, Nagao Y, Mizukami H, Sakata A, Muramatsu SI, Ozawa K, et al. CRISPR/Cas9-mediated genome editing via postnatal administration of AAV vector cures haemophilia B mice. Sci Rep. 2017;7:4159. https://doi.org/10.1038/s41598-017-04625-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Huai C, Jia C, Sun R, Xu P, Min T, Wang Q, et al. CRISPR/Cas9-mediated somatic and germline gene correction to restore hemostasis in hemophilia B mice. Hum Genet. 2017;136:875–83. https://doi.org/10.1007/s00439-017-1801-z.

    Article  CAS  PubMed  Google Scholar 

  86. Dreyer AK, Hoffmann D, Lachmann N, Ackermann M, Steinemann D, Timm B, et al. TALEN-mediated functional correction of X-linked chronic granulomatous disease in patient-derived induced pluripotent stem cells. Biomaterials. 2015;69:191–200. https://doi.org/10.1016/j.biomaterials.2015.07.057.

    Article  CAS  PubMed  Google Scholar 

  87. Merling RK, Sweeney CL, Chu J, Bodansky A, Choi U, Priel DL, et al. An AAVS1-targeted minigene platform for correction of iPSCs from all five types of chronic granulomatous disease. Mol Ther. 2015;23:147–57. https://doi.org/10.1038/mt.2014.195.

    Article  CAS  PubMed  Google Scholar 

  88. Sweeney CL, Zou J, Choi U, Merling RK, Liu A, Bodansky A, et al. Targeted repair of CYBB in X-CGD iPSCs requires retention of intronic sequences for expression and functional correction. Mol Ther. 2017;25:321–30. https://doi.org/10.1016/j.ymthe.2016.11.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Flynn R, Grundmann A, Renz P, Hanseler W, James WS, Cowley SA, et al. CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells. Exp Hematol. 2015;43:838–48 e833. https://doi.org/10.1016/j.exphem.2015.06.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. De Ravin SS, Li L, Wu X, Choi U, Allen C, Koontz S, et al. CRISPR-Cas9 gene repair of hematopoietic stem cells from patients with X-linked chronic granulomatous disease. Sci Transl Med. 2017;9. https://doi.org/10.1126/scitranslmed.aah3480.

    Article  PubMed  Google Scholar 

  91. Li L, Krymskaya L, Wang J, Henley J, Rao A, Cao LF, et al. Genomic editing of the HIV-1 coreceptor CCR5 in adult hematopoietic stem and progenitor cells using zinc finger nucleases. Mol Ther. 2013;21:1259–69. https://doi.org/10.1038/mt.2013.65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Li C, Guan X, Du T, Jin W, Wu B, Liu Y, et al. Inhibition of HIV-1 infection of primary CD4+T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9. J Gen Virol. 2015;96:2381–93. https://doi.org/10.1099/vir.0.000139.

    Article  CAS  PubMed  Google Scholar 

  93. Xu L, Yang H, Gao Y, Chen Z, Xie L, Liu Y, et al. CRISPR/Cas9-mediated CCR5 ablation in human hematopoietic stem/progenitor cells confers HIV-1 resistance in vivo. Mol Ther. 2017;25:1782–9. https://doi.org/10.1016/j.ymthe.2017.04.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financed by the research funding programs Jürgen Manchot Stiftung, Fortüne Tübingen (N°. 2412-0-0; N°. 2485-0-0), and the University Children’s Hospital of Tübingen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Mezger.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daniel-Moreno, A., Lamsfus-Calle, A., Raju, J. et al. CRISPR/Cas9-modified hematopoietic stem cells—present and future perspectives for stem cell transplantation. Bone Marrow Transplant 54, 1940–1950 (2019). https://doi.org/10.1038/s41409-019-0510-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-019-0510-8

This article is cited by

Search

Quick links