Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

E3 ubiquitin ligase UBR5 modulates circadian rhythm by facilitating the ubiquitination and degradation of the key clock transcription factor BMAL1

Abstract

The circadian clock is the inner rhythm of life activities and is controlled by a self-sustained and endogenous molecular clock, which maintains a ~ 24 h internal oscillation. As the core element of the circadian clock, BMAL1 is susceptible to degradation through the ubiquitin-proteasome system (UPS). Nevertheless, scant information is available regarding the UPS enzymes that intricately modulate both the stability and transcriptional activity of BMAL1, affecting the cellular circadian rhythm. In this work, we identify and validate UBR5 as a new E3 ubiquitin ligase that interacts with BMAL1 by using affinity purification, mass spectrometry, and biochemical experiments. UBR5 overexpression induced BMAL1 ubiquitination, leading to diminished stability and reduced protein level of BMAL1, thereby attenuating its transcriptional activity. Consistent with this, UBR5 knockdown increases the BMAL1 protein. Domain mapping discloses that the C-terminus of BMAL1 interacts with the N-terminal domains of UBR5. Similarly, cell-line-based experiments discover that HYD, the UBR5 homolog in Drosophila, could interact with and downregulate CYCLE, the BMAL1 homolog in Drosophila. PER2-luciferase bioluminescence real-time reporting assay in a mammalian cell line and behavioral experiments in Drosophila reveal that UBR5 or hyd knockdown significantly reduces the period of the circadian clock. Therefore, our work discovers a new ubiquitin ligase UBR5 that regulates BMAL1 stability and circadian rhythm and elucidates the underlying molecular mechanism. This work provides an additional layer of complexity to the regulatory network of the circadian clock at the post-translational modification, offering potential insights into the modulation of the dysregulated circadian rhythm.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proteomic identification of UBR5 as a BMAL1-interacting protein.
Fig. 2: UBR5 interacts and colocalizes with BMAL1.
Fig. 3: UBR5 downregulates BMAL1.
Fig. 4: UBR5 reduces BMAL1 stability by promoting its ubiquitination and degradation.
Fig. 5: UBR5 and BMAL1 interact with each other at their N- and C-terminal regions, respectively.
Fig. 6: UBR5 reduces the luciferase activity of the WT but not the E-box deleted REV-ERBα plasmid.
Fig. 7: UBR5 depletion increases the expression of BMAL1 downstream genes.
Fig. 8: UBR5 alters the cellular circadian clock in vitro.
Fig. 9: HYD regulates CYCLE in cells and the circadian period of fruit flies.
Fig. 10: The molecular mechanism by which UBR5 modulates the circadian clock in mammalian cells and fruit flies.

Similar content being viewed by others

Data availability

The proteomics data obtained from mass spectrometry have been submitted to the ProteomeXchange Consortium (https://proteomecentral.proteomexchange.org) through the iProX partner repository [90, 91], and are accessible with the dataset identifier PXD050794.

References

  1. Brancaccio M, Edwards MD, Patton AP, Smyllie NJ, Chesham JE, Maywood ES, et al. Cell-autonomous clock of astrocytes drives circadian behavior in mammals. Science. 2019;363:187–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Patke A, Young MW, Axelrod S. Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol. 2020;21:67–84.

    Article  CAS  PubMed  Google Scholar 

  3. Zheng Y, Pan L, Wang F, Yan J, Wang T, Xia Y, et al. Neural function of Bmal1: an overview. Cell Biosci. 2023;13:1.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hirayama J, Sahar S, Grimaldi B, Tamaru T, Takamatsu K, Nakahata Y, et al. CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature. 2007;450:1086–90.

    Article  CAS  PubMed  Google Scholar 

  5. Tamaru T, Hattori M, Honda K, Nakahata Y, Sassone-Corsi P, van der Horst GT, et al. CRY drives cyclic CK2-mediated BMAL1 phosphorylation to control the mammalian circadian clock. PLoS Biol. 2015;13:e1002293.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Schibler U. BMAL1 dephosphorylation determines the pace of the circadian clock. Genes Dev. 2021;35:1076–8.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Li MD, Ruan HB, Hughes ME, Lee JS, Singh JP, Jones SP, et al. O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination. Cell Metab. 2013;17:303–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ullah K, Chen S, Lu J, Wang X, Liu Q, Zhang Y, et al. The E3 ubiquitin ligase STUB1 attenuates cell senescence by promoting the ubiquitination and degradation of the core circadian regulator BMAL1. J Biol Chem. 2020;295:4696–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cardone L, Hirayama J, Giordano F, Tamaru T, Palvimo JJ, Sassone-Corsi P. Circadian clock control by SUMOylation of BMAL1. Science. 2005;309:1390–4.

    Article  CAS  PubMed  Google Scholar 

  10. Liu WW, Wei SZ, Huang GD, Liu LB, Gu C, Shen Y, et al. BMAL1 regulation of microglia-mediated neuroinflammation in MPTP-induced Parkinson’s disease mouse model. FASEB J. 2020;34:6570–81.

    Article  CAS  PubMed  Google Scholar 

  11. Lananna BV, McKee CA, King MW, Del-Aguila JL, Dimitry JM, Farias FHG, et al. Chi3l1/YKL-40 is controlled by the astrocyte circadian clock and regulates neuroinflammation and Alzheimer’s disease pathogenesis. Sci Transl Med. 2020;12:eaax3519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xie M, Tang Q, Nie J, Zhang C, Zhou X, Yu S, et al. BMAL1-downregulation aggravates porphyromonas gingivalis-induced atherosclerosis by encouraging oxidative stress. Circ Res. 2020;126:e15–29.

    Article  CAS  PubMed  Google Scholar 

  13. Grskovic P, Korac P. Circadian gene variants in diseases. Genes. 2023;14:1703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fan R, Peng X, Xie L, Dong K, Ma D, Xu W, et al. Importance of Bmal1 in Alzheimer’s disease and associated aging-related diseases: mechanisms and interventions. Aging Cell. 2022;21:e13704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu J, Jing X, Du Q, Sun X, Holgersson K, Gao J, et al. Disruption of the clock component Bmal1 in mice promotes cancer metastasis through the PAI-1-TGF-β-myoCAF-dependent mechanism. Adv Sci. 2023;10:e2301505.

    Article  Google Scholar 

  16. Pan X, Mota S, Zhang B. Circadian clock regulation on lipid metabolism and metabolic diseases. Adv Exp Med Biol. 2020;1276:53–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang N, Yu H, Liu T, Zhou Z, Feng B, Wang Y, et al. Bmal1 downregulation leads to diabetic cardiomyopathy by promoting Bcl-2/IP3R-mediated mitochondrial Ca2+ overload. Redox Biol. 2023;64:102788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen G, Tang Q, Yu S, Xie Y, Sun J, Li S, et al. The biological function of BMAL1 in skeleton development and disorders. Life Sci. 2020;253:117636.

    Article  CAS  PubMed  Google Scholar 

  19. Scheffner M, Nuber U, Huibregtse JM. Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature. 1995;373:81–3.

    Article  CAS  PubMed  Google Scholar 

  20. Elia AE, Boardman AP, Wang DC, Huttlin EL, Everley RA, Dephoure N, et al. Quantitative proteomic atlas of ubiquitination and acetylation in the DNA damage response. Mol Cell. 2015;59:867–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Durcan TM, Tang MY, Perusse JR, Dashti EA, Aguileta MA, McLelland GL, et al. USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin. EMBO J. 2014;33:2473–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chastagner P, Israel A, Brou C. Itch/AIP4 mediates Deltex degradation through the formation of K29-linked polyubiquitin chains. EMBO Rep. 2006;7:1147–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jin L, Williamson A, Banerjee S, Philipp I, Rape M. Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell. 2008;133:653–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grice GL, Lobb IT, Weekes MP, Gygi SP, Antrobus R, Nathan JA. The proteasome distinguishes between heterotypic and homotypic lysine-11-linked polyubiquitin chains. Cell Rep. 2015;12:545–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. He X, Zhu Y, Zhang Y, Geng Y, Gong J, Geng J, et al. RNF34 functions in immunity and selective mitophagy by targeting MAVS for autophagic degradation. EMBO J. 2019;38:e100978.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang X, Zhang H, Shao Z, Zhuang W, Sui C, Liu F, et al. TRIM31 facilitates K27-linked polyubiquitination of SYK to regulate antifungal immunity. Signal Transduct Target Ther. 2021;6:298.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jin J, Xie X, Xiao Y, Hu H, Zou Q, Cheng X, et al. Epigenetic regulation of the expression of Il12 and Il23 and autoimmune inflammation by the deubiquitinase Trabid. Nat Immunol. 2016;17:259–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ohtake F, Tsuchiya H. The emerging complexity of ubiquitin architecture. J Biochem. 2017;161:125–33.

    CAS  PubMed  Google Scholar 

  29. Lin M, Zhao Z, Yang Z, Meng Q, Tan P, Xie W, et al. USP38 inhibits type I interferon signaling by editing TBK1 ubiquitination through NLRP4 signalosome. Mol Cell. 2016;64:267–81.

    Article  CAS  PubMed  Google Scholar 

  30. Schnell JD, Hicke L. Non-traditional functions of ubiquitin and ubiquitin-binding proteins. J Biol Chem. 2003;278:35857–60.

    Article  CAS  PubMed  Google Scholar 

  31. Popovic D, Vucic D, Dikic I. Ubiquitination in disease pathogenesis and treatment. Nat Med. 2014;20:1242–53.

    Article  CAS  PubMed  Google Scholar 

  32. Brooks CL, Gu W. Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol. 2003;15:164–71.

    Article  CAS  PubMed  Google Scholar 

  33. Senft D, Qi J, Ronai ZA. Ubiquitin ligases in oncogenic transformation and cancer therapy. Nat Rev Cancer. 2018;18:69–88.

    Article  CAS  PubMed  Google Scholar 

  34. Bernassola F, Chillemi G, Melino G. HECT-type E3 ubiquitin ligases in cancer. Trends Biochem Sci. 2019;44:1057–75.

    Article  CAS  PubMed  Google Scholar 

  35. Wang F, He Q, Zhan W, Yu Z, Finkin-Groner E, Ma X, et al. Structure of the human UBR5 E3 ubiquitin ligase. Structure. 2023;31:541–52.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Grau-Bove X, Sebe-Pedros A, Ruiz-Trillo I. A genomic survey of HECT ubiquitin ligases in eukaryotes reveals independent expansions of the HECT system in several lineages. Genome Biol Evol. 2013;5:833–47.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Clancy JL, Henderson MJ, Russell AJ, Anderson DW, Bova RJ, Campbell IG, et al. EDD, the human orthologue of the hyperplastic discs tumour suppressor gene, is amplified and overexpressed in cancer. Oncogene. 2003;22:5070–81.

    Article  CAS  PubMed  Google Scholar 

  38. Kozlov G, Nguyen L, Lin T, De Crescenzo G, Park M, Gehring K. Structural basis of ubiquitin recognition by the ubiquitin-associated (UBA) domain of the ubiquitin ligase EDD. J Biol Chem. 2007;282:35787–95.

    Article  CAS  PubMed  Google Scholar 

  39. Tasaki T, Mulder LC, Iwamatsu A, Lee MJ, Davydov IV, Varshavsky A, et al. A family of mammalian E3 ubiquitin ligases that contain the UBR box motif and recognize N-degrons. Mol Cell Biol. 2005;25:7120–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huibregtse JM, Scheffner M, Howley PM. E6-AP directs the HPV E6-dependent inactivation of p53 and is representative of a family of structurally and functionally related proteins. Cold Spring Harb Symp Quant Biol. 1994;59:237–45.

    Article  CAS  PubMed  Google Scholar 

  41. Deo RC, Sonenberg N, Burley SK. X-ray structure of the human hyperplastic discs protein: an ortholog of the C-terminal domain of poly(A)-binding protein. Proc Natl Acad Sci USA 2001;98:4414–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Matta-Camacho E, Kozlov G, Menade M, Gehring K. Structure of the HECT C-lobe of the UBR5 E3 ubiquitin ligase. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2012;68:1158–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jiang W, Wang S, Xiao M, Lin Y, Zhou L, Lei Q, et al. Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. Mol Cell. 2011;43:33–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Qiao X, Liu Y, Prada ML, Mohan AK, Gupta A, Jaiswal A, et al. UBR5 is coamplified with MYC in breast tumors and encodes an ubiquitin ligase that limits MYC-dependent apoptosis. Cancer Res. 2020;80:1414–27.

    Article  CAS  PubMed  Google Scholar 

  45. Zhou Y, Zheng R, Liu D, Liu S, Disoma C, Li S, et al. UBR5 acts as an antiviral host factor against MERS-CoV via promoting ubiquitination and degradation of ORF4b. J Virol. 2022;96:e0074122.

    Article  PubMed  Google Scholar 

  46. de Vivo A, Sanchez A, Yegres J, Kim J, Emly S, Kee Y. The OTUD5-UBR5 complex regulates FACT-mediated transcription at damaged chromatin. Nucleic Acids Res. 2019;47:729–46.

    Article  PubMed  Google Scholar 

  47. Zhang Y, Hou J, Shi S, Du J, Liu Y, Huang P, et al. CSN6 promotes melanoma proliferation and metastasis by controlling the UBR5-mediated ubiquitination and degradation of CDK9. Cell Death Dis. 2021;12:118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Matsuura K, Huang NJ, Cocce K, Zhang L, Kornbluth S. Downregulation of the proapoptotic protein MOAP-1 by the UBR5 ubiquitin ligase and its role in ovarian cancer resistance to cisplatin. Oncogene. 2017;36:1698–706.

    Article  CAS  PubMed  Google Scholar 

  49. Bolt MJ, Stossi F, Callison AM, Mancini MG, Dandekar R, Mancini MA. Systems level-based RNAi screening by high content analysis identifies UBR5 as a regulator of estrogen receptor—a protein levels and activity. Oncogene. 2015;34:154–64.

    Article  CAS  PubMed  Google Scholar 

  50. Tsai JM, Aguirre JD, Li YD, Brown J, Focht V, Kater L, et al. UBR5 forms ligand-dependent complexes on chromatin to regulate nuclear hormone receptor stability. Mol Cell. 2023;83:2753–67.e10.

    Article  CAS  PubMed  Google Scholar 

  51. Ong SS, Goktug AN, Elias A, Wu J, Saunders D, Chen T. Stability of the human pregnane X receptor is regulated by E3 ligase UBR5 and serine/threonine kinase DYRK2. Biochem J. 2014;459:193–203.

    Article  CAS  PubMed  Google Scholar 

  52. Smits VA. EDD induces cell cycle arrest by increasing p53 levels. Cell Cycle. 2012;11:715–20.

    Article  CAS  PubMed  Google Scholar 

  53. Hu G, Wang X, Saunders DN, Henderson M, Russell AJ, Herring BP, et al. Modulation of myocardin function by the ubiquitin E3 ligase UBR5. J Biol Chem. 2010;285:11800–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Henderson MJ, Russell AJ, Hird S, Munoz M, Clancy JL, Lehrbach GM, et al. EDD, the human hyperplastic discs protein, has a role in progesterone receptor coactivation and potential involvement in DNA damage response. J Biol Chem. 2002;277:26468–78.

    Article  CAS  PubMed  Google Scholar 

  55. Naik E, Webster JD, DeVoss J, Liu J, Suriben R, Dixit VM. Regulation of proximal T cell receptor signaling and tolerance induction by deubiquitinase Usp9X. J Exp Med. 2014;211:1947–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Guo D, Zhang S, Sun H, Xu X, Hao Z, Mu C, et al. Tyrosine hydroxylase down-regulation after loss of Abelson helper integration site 1 (AHI1) promotes depression via the circadian clock pathway in mice. J Biol Chem. 2018;293:5090–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jiang W, Zhao S, Jiang X, Zhang E, Hu G, Hu B, et al. The circadian clock gene Bmal1 acts as a potential anti-oncogene in pancreatic cancer by activating the p53 tumor suppressor pathway. Cancer Lett. 2016;371:314–25.

    Article  CAS  PubMed  Google Scholar 

  58. Xu G, Jiang X, Jaffrey SR. A mental retardation-linked nonsense mutation in cereblon is rescued by proteasome inhibition. J Biol Chem. 2013;288:29573–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhou Y, Xiong L, Zhang Y, Yu R, Jiang X, Xu G. Quantitative proteomics identifies myoferlin as a novel regulator of A Disintegrin and Metalloproteinase 12 in HeLa cells. J Proteom. 2016;148:94–104.

    Article  CAS  Google Scholar 

  60. Gharahdaghi F, Weinberg CR, Meagher DA, Imai BS, Mische SM. Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: a method for the removal of silver ions to enhance sensitivity. Electrophoresis. 1999;20:601–5.

    Article  CAS  PubMed  Google Scholar 

  61. Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc. 2006;1:2856–60.

    Article  CAS  PubMed  Google Scholar 

  62. Duan W, Chen S, Zhang Y, Li D, Wang R, Chen S, et al. Protein C-terminal enzymatic labeling identifies novel caspase cleavages during the apoptosis of multiple myeloma cells induced by kinase inhibition. Proteomics. 2016;16:60–9.

    Article  CAS  PubMed  Google Scholar 

  63. UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res. 2015;43:D204–12.

    Article  Google Scholar 

  64. Ren H, Fu K, Mu C, Zhen X, Wang G. L166P mutant DJ-1 promotes cell death by dissociating Bax from mitochondrial Bcl-XL. Mol Neurodegener. 2012;7:40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li Q, Li Y, Wang X, Qi J, Jin X, Tong H, et al. Fbxl4 serves as a clock output molecule that regulates sleep through promotion of rhythmic degradation of the GABAA receptor. Curr Biol. 2017;27:3616–25.e5.

    Article  CAS  PubMed  Google Scholar 

  66. Liao L, Song M, Li X, Tang L, Zhang T, Zhang L, et al. E3 ubiquitin ligase UBR5 drives the growth and metastasis of triple-negative breast cancer. Cancer Res. 2017;77:2090–101.

    Article  CAS  PubMed  Google Scholar 

  67. Varshavsky A. The N-end rule pathway and regulation by proteolysis. Protein Sci. 2011;20:1298–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shearer RF, Iconomou M, Watts CK, Saunders DN. Functional roles of the E3 ubiquitin ligase UBR5 in cancer. Mol Cancer Res. 2015;13:1523–32.

    Article  CAS  PubMed  Google Scholar 

  69. Shearer RF, Frikstad KM, McKenna J, McCloy RA, Deng N, Burgess A, et al. The E3 ubiquitin ligase UBR5 regulates centriolar satellite stability and primary cilia. Mol Biol Cell. 2018;29:1542–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dunlap JC. Molecular bases for circadian clocks. Cell. 1999;96:271–90.

    Article  CAS  PubMed  Google Scholar 

  71. Li E, Li X, Huang J, Xu C, Liang Q, Ren K, et al. BMAL1 regulates mitochondrial fission and mitophagy through mitochondrial protein BNIP3 and is critical in the development of dilated cardiomyopathy. Protein Cell. 2020;11:661–79.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Curtis AM, Bellet MM, Sassone-Corsi P, O’Neill LA. Circadian clock proteins and immunity. Immunity. 2014;40:178–86.

    Article  CAS  PubMed  Google Scholar 

  73. Ray S, Valekunja UK, Stangherlin A, Howell SA, Snijders AP, Damodaran G, et al. Circadian rhythms in the absence of the clock gene Bmal1. Science. 2020;367:800–6.

    Article  CAS  PubMed  Google Scholar 

  74. Chen S, Yang J, Yang L, Zhang Y, Zhou L, Liu Q, et al. Ubiquitin ligase TRAF2 attenuates the transcriptional activity of the core clock protein BMAL1 and affects the maximal Per1 mRNA level of the circadian clock in cells. FEBS J. 2018;285:2987–3001.

    Article  CAS  PubMed  Google Scholar 

  75. Chen S, Yang J, Zhang Y, Duan C, Liu Q, Huang Z, et al. Ubiquitin-conjugating enzyme UBE2O regulates cellular clock function by promoting the degradation of the transcription factor BMAL1. J Biol Chem. 2018;293:11296–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang Y, Duan C, Yang J, Chen S, Liu Q, Zhou L, et al. Deubiquitinating enzyme USP9X regulates cellular clock function by modulating the ubiquitination and degradation of a core circadian protein BMAL1. Biochem J. 2018;475:1507–22.

    Article  CAS  PubMed  Google Scholar 

  77. Kitamura H, Hashimoto M. USP2-related cellular signaling and consequent pathophysiological outcomes. Int J Mol Sci. 2021;22:1209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang L, Abraham D, Lin ST, Oster H, Eichele G, Fu YH, et al. PKCg participates in food entrainment by regulating BMAL1. Proc Natl Acad Sci USA 2012;109:20679–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gossan NC, Zhang F, Guo B, Jin D, Yoshitane H, Yao A, et al. The E3 ubiquitin ligase UBE3A is an integral component of the molecular circadian clock through regulating the BMAL1 transcription factor. Nucleic Acids Res. 2014;42:5765–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Scoma HD, Humby M, Yadav G, Zhang Q, Fogerty J, Besharse JC. The de-ubiquitinylating enzyme, USP2, is associated with the circadian clockwork and regulates its sensitivity to light. PLoS One. 2011;6:e25382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hu Y, Li X, Zhang J, Liu D, Lu R, Li JD. A genome-wide CRISPR screen identifies USP1 as a novel regulator of the mammalian circadian clock. FEBS J. 2024;291:445–57.

    Article  CAS  PubMed  Google Scholar 

  82. Papagiannakopoulos T, Bauer MR, Davidson SM, Heimann M, Subbaraj L, Bhutkar A, et al. Circadian rhythm disruption promotes lung tumorigenesis. Cell Metab. 2016;24:324–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yang C, Wu J, Liu X, Wang Y, Liu B, Chen X, et al. Circadian rhythm is disrupted by ZNF704 in breast carcinogenesis. Cancer Res. 2020;80:4114–28.

    Article  CAS  PubMed  Google Scholar 

  84. Stokes K, Nunes M, Trombley C, Flores D, Wu G, Taleb Z, et al. The circadian clock gene, Bmal1, regulates intestinal stem cell signaling and represses tumor initiation. Cell Mol Gastroenterol Hepatol. 2021;12:1847–72.e0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Song M, Yeku OO, Rafiq S, Purdon T, Dong X, Zhu L, et al. Tumor derived UBR5 promotes ovarian cancer growth and metastasis through inducing immunosuppressive macrophages. Nat Commun. 2020;11:6298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen L, Yuan R, Wen C, Liu T, Feng Q, Deng X, et al. E3 ubiquitin ligase UBR5 promotes pancreatic cancer growth and aerobic glycolysis by downregulating FBP1 via destabilization of C/EBPα. Oncogene. 2021;40:262–76.

    Article  CAS  PubMed  Google Scholar 

  87. Wu B, Song M, Dong Q, Xiang G, Li J, Ma X, et al. UBR5 promotes tumor immune evasion through enhancing IFN-γ-induced PDL1 transcription in triple negative breast cancer. Theranostics. 2022;12:5086–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mullenders J, Fabius AW, Madiredjo M, Bernards R, Beijersbergen RL. A large scale shRNA barcode screen identifies the circadian clock component ARNTL as putative regulator of the p53 tumor suppressor pathway. PLoS One. 2009;4:e4798.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Miki T, Matsumoto T, Zhao Z, Lee CC. p53 regulates Period2 expression and the circadian clock. Nat Commun. 2013;4:2444.

    Article  PubMed  Google Scholar 

  90. Ma J, Chen T, Wu S, Yang C, Bai M, Shu K, et al. iProX: an integrated proteome resource. Nucleic Acids Res. 2019;47:D1211–7.

    Article  PubMed  Google Scholar 

  91. Chen T, Ma J, Liu Y, Chen Z, Xiao N, Lu Y, et al. iProX in 2021: connecting proteomics data sharing with big data. Nucleic Acids Res. 2022;50:D1522–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Guang-hui Wang and Dr. Xin-liang Mao from Soochow University for providing REV-ERBα E-box and REV-ERBα ΔE-box firefly luciferase reporter plasmids and the Myc-ubiquitin plasmid, respectively. UBR5 and UBR5 C2768A mutant plasmids were provided by Addgene. The MS analyses were performed in the Mass Spectrometry core facility at the Suzhou Medical School of Soochow University. This work was supported by the National Key R&D Program of China (2019YFA0802401), National Natural Science Foundation of China (31971353), National Center for International Research (2017B01012), Jiangsu Key Laboratory of Neuropsychiatric Diseases (BM2013003), and a project funded by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Contributions

GQX contributed to the conception and design of this study; CYD completed the main part of the experiment. XGJ, YZ, SPC, and QL performed the MS experiments. YL, HYZ, LZ, KU, QG, and ZHL assisted in molecular cloning and biochemical experiments. YT, ZYH, YX, CYD, and Jun-hai Han participated in the in vivo and in vitro circadian rhythm experiments; CYD participated in data analysis; GQX, DOC, Jiajie Hou, and CYD contributed to drafting the manuscript and revising critically for intellectual content.

Corresponding author

Correspondence to Guo qiang Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, C., Li, Y., Zhi, H. et al. E3 ubiquitin ligase UBR5 modulates circadian rhythm by facilitating the ubiquitination and degradation of the key clock transcription factor BMAL1. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01290-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01290-z

Keywords

Search

Quick links