Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ROCK1 inhibition improves wound healing in diabetes via RIPK4/AMPK pathway

Abstract

Refractory wounds are a severe complication of diabetes mellitus that often leads to amputation because of the lack of effective treatments and therapeutic targets. The pathogenesis of refractory wounds is complex, involving many types of cells. Rho-associated protein kinase-1 (ROCK1) phosphorylates a series of substrates that trigger downstream signaling pathways, affecting multiple cellular processes, including cell migration, communication, and proliferation. The present study investigated the role of ROCK1 in diabetic wound healing and molecular mechanisms. Our results showed that ROCK1 expression significantly increased in wound granulation tissues in diabetic patients, streptozotocin (STZ)-induced diabetic mice, and db/db diabetic mice. Wound healing and blood perfusion were dose-dependently improved by the ROCK1 inhibitor fasudil in diabetic mice. In endothelial cells, fasudil and ROCK1 siRNA significantly elevated the phosphorylation of adenosine monophosphate-activated protein kinase at Thr172 (pThr172-AMPKα), the activity of endothelial nitric oxide synthase (eNOS), and suppressed the levels of mitochondrial reactive oxygen species (mtROS) and nitrotyrosine formation. Experiments using integrated bioinformatics analysis and coimmunoprecipitation established that ROCK1 inhibited pThr172-AMPKα by binding to receptor-interacting serine/threonine kinase 4 (RIPK4). These results suggest that fasudil accelerated wound repair and improved angiogenesis at least partially through the ROCK1/RIPK4/AMPK pathway. Fasudil may be a potential treatment for refractory wounds in diabetic patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ROCK1 expression levels in diabetic wounds.
Fig. 2: ROCK1 inhibition promoted diabetic wound healing.
Fig. 3: ROCK1 inhibition reduced ROS and increased NO production.
Fig. 4: ROCK1 inhibition enhanced EC angiogenesis.
Fig. 5: ROCK1 inhibition promoted diabetic wound healing.
Fig. 6: ROCK1 inhibition increased the ratio of pThr172-AMPKα/AMPKα under HG.
Fig. 7: RIPK4 mediated ROCK1-induced regulation of AMPKα.
Fig. 8: Schematic diagram of the possible mechanism contributing to diabetic wound healing regulated by ROCK1 in endothelial cells.

Similar content being viewed by others

References

  1. Falanga V. Wound healing and its impairment in the diabetic foot. Lancet. 2005;366:1736–43.

    Article  PubMed  Google Scholar 

  2. Kolumam G, Wu X, Lee WP, Hackney JA, Zavala-Solorio J, Gandham V, et al. IL-22R ligands IL-20, IL-22, and IL-24 promote wound healing in diabetic db/db mice. PLoS One. 2017;12:e0170639.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gregorio J, Meller S, Conrad C, Di Nardo A, Homey B, Lauerma A, et al. Plasmacytoid dendritic cells sense skin injury and promote wound healing through type I interferons. J Exp Med. 2010;207:2921–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453:314–21.

    Article  CAS  PubMed  Google Scholar 

  5. Chen Y, Culetto E, Legouis R. The strange case of Drp1 in autophagy: Jekyll and Hyde? Bioessays. 2022;44:e2100271.

    Article  PubMed  Google Scholar 

  6. Chang YW, Song ZH, Chen CC. FAK regulates cardiomyocyte mitochondrial fission and function through Drp1. FEBS J. 2022;289:1897–910.

    Article  CAS  PubMed  Google Scholar 

  7. Shenouda SM, Widlansky ME, Chen K, Xu G, Holbrook M, Tabit CE, et al. Altered mitochondrial dynamics contributes to endothelial dysfunction in diabetes mellitus. Circulation. 2011;124:444–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shosha E, Fouda AY, Lemtalsi T, Haigh S, Fulton D, Ibrahim A, et al. Endothelial arginase 2 mediates retinal ischemia/reperfusion injury by inducing mitochondrial dysfunction. Mol Metab. 2021;53:101273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Noma K, Oyama N, Liao JK. Physiological role of ROCKs in the cardiovascular system. Am J Physiol Cell Physiol. 2006;290:C661–C668.

    Article  CAS  PubMed  Google Scholar 

  10. Nunes KP, Rigsby CS, Webb RC. RhoA/Rho-kinase and vascular diseases: what is the link? Cell Mol Life Sci. 2010;67:3823–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhao H, Kong H, Wang W, Chen T, Zhang Y, Zhu J, et al. High glucose aggravates retinal endothelial cell dysfunction by activating the RhoA/ROCK1/pMLC/Connexin43 signaling pathway. Investig Ophthalmol Vis Sci. 2022;63:22.

    Article  CAS  Google Scholar 

  12. Zhou W, Yuan X, Li J, Wang W, Ye S. Retinol binding protein 4 promotes the phenotypic transformation of vascular smooth muscle cells under high glucose condition via modulating RhoA/ROCK1 pathway. Transl Res. 2023;259:13–27.

    Article  CAS  PubMed  Google Scholar 

  13. Shu A, Du Q, Chen J, Gao Y, Zhu Y, Lv G, et al. Catalpol ameliorates endothelial dysfunction and inflammation in diabetic nephropathy via suppression of RAGE/RhoA/ROCK signaling pathway. Chem Biol Interact. 2021;348:109625.

    Article  CAS  PubMed  Google Scholar 

  14. Ming XF, Viswambharan H, Barandier C, Ruffieux J, Kaibuchi K, Rusconi S, et al. Rho GTPase/Rho kinase negatively regulates endothelial nitric oxide synthase phosphorylation through the inhibition of protein kinase B/Akt in human endothelial cells. Mol Cell Biol. 2002;22:8467–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Laufs U, Liao JK. Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase. J Biol Chem. 1998;273:24266–71.

    Article  CAS  PubMed  Google Scholar 

  16. Cicek FA, Kandilci HB, Turan B. Role of ROCK upregulation in endothelial and smooth muscle vascular functions in diabetic rat aorta. Cardiovasc Diabetol. 2013;12:51.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107:1058–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang W, Wang Y, Long J, Wang J, Haudek SB, Overbeek P, et al. Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells. Cell Metab. 2012;15:186–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu N, Zhang X, Bao Y, Yu H, Jia D, Ma C. Down-regulation of GAS5 ameliorates myocardial ischaemia/reperfusion injury via the miR-335/ROCK1/AKT/GSK-3β axis. J Cell Mol Med. 2019;23:8420–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shi Y, Fan S, Wang D, Huyan T, Chen J, Chen J, et al. FOXO1 inhibition potentiates endothelial angiogenic functions in diabetes via suppression of ROCK1/Drp1-mediated mitochondrial fission. Biochim Biophys Acta Mol Basis Dis. 2018;1864:2481–94.

    Article  CAS  PubMed  Google Scholar 

  21. Berrino E, Supuran CT. Rho-kinase inhibitors in the management of glaucoma. Expert Opin Ther Pat. 2019;29:817–27.

    Article  CAS  PubMed  Google Scholar 

  22. Ohbuchi M, Kimura T, Nishikawa T, Horiguchi T, Fukuda M, Masaki Y. Neuroprotective effects of fasudil, a Rho-kinase inhibitor, after spinal cord ischemia and reperfusion in rats. Anesthesia Analgesia. 2018;126:815–23.

    Article  CAS  PubMed  Google Scholar 

  23. El-Waseif AG, Nader MA, Salem HA, Elshaer SL. Fasudil, a ROCK inhibitor, preserves limb integrity in a mouse model of unilateral critical limb ischemia: Possible interplay of inflammatory and angiogenic signaling pathways. Life Sci. 2022;309:121019.

    Article  CAS  PubMed  Google Scholar 

  24. Tie L, An Y, Han J, Xiao Y, Xiaokaiti Y, Fan S, et al. Genistein accelerates refractory wound healing by suppressing superoxide and FoxO1/iNOS pathway in type 1 diabetes. J Nutr Biochem. 2013;24:88–96.

    Article  CAS  PubMed  Google Scholar 

  25. Tie L, Chen LY, Chen DD, Xie HH, Channon KM, Chen AF. GTP cyclohydrolase I prevents diabetic-impaired endothelial progenitor cells and wound healing by suppressing oxidative stress/thrombospondin-1. Am J Physiol Endocrinol Metab. 2014;306:E1120–E1131.

    Article  CAS  PubMed  Google Scholar 

  26. Wang D, Wang Y, Zou X, Shi Y, Liu Q, Huyan T, et al. FOXO1 inhibition prevents renal ischemia-reperfusion injury via cAMP-response element binding protein/PPAR-γ coactivator-1α-mediated mitochondrial biogenesis. Br J Pharmacol. 2020;177:432–48.

    Article  CAS  PubMed  Google Scholar 

  27. Wu P, Cai J, Fan S, Liu Q, Huyan T, He Y, et al. A novel risk score predicts prognosis in melanoma: The combination of three tumor-infiltrating immune cells and four immune-related genes. Clin Immunol. 2021;228:108751.

    Article  CAS  PubMed  Google Scholar 

  28. Song C, Ye M, Liu Z, Cheng H, Jiang X, Han G, et al. Systematic analysis of protein phosphorylation networks from phosphoproteomic data. Mol Cell Proteom. 2012;11:1070–83.

    Article  CAS  Google Scholar 

  29. Curtis MJ, Alexander S, Cirino G, Docherty JR, George CH, Giembycz MA, et al. Experimental design and analysis and their reporting II: updated and simplified guidance for authors and peer reviewers. Br J Pharmacol. 2018;175:987–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tie L, Yang HQ, An Y, Liu SQ, Han J, Xu Y, et al. Ganoderma lucidum polysaccharide accelerates refractory wound healing by inhibition of mitochondrial oxidative stress in type 1 diabetes. Cell Physiol Biochem. 2012;29:583–94.

    Article  CAS  PubMed  Google Scholar 

  31. Huang H, Lee SH, Sousa-Lima I, Kim SS, Hwang WM, Dagon Y, et al. Rho-kinase/AMPK axis regulates hepatic lipogenesis during overnutrition. J Clin Invest. 2018;128:5335–50.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tang S, Wu W, Tang W, Ge Z, Wang H, Hong T, et al. Suppression of Rho-kinase 1 is responsible for insulin regulation of the AMPK/SREBP-1c pathway in skeletal muscle cells exposed to palmitate. Acta Diabetol. 2017;54:635–44.

    Article  CAS  PubMed  Google Scholar 

  33. Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science. 1996;273:245–8.

    Article  CAS  PubMed  Google Scholar 

  34. Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature. 2002;420:629–35.

    Article  CAS  PubMed  Google Scholar 

  35. Yao L, Chandra S, Toque HA, Bhatta A, Rojas M, Caldwell RB, et al. Prevention of diabetes-induced arginase activation and vascular dysfunction by Rho kinase (ROCK) knockout. Cardiovasc Res. 2013;97:509–19.

    Article  CAS  PubMed  Google Scholar 

  36. Kolavennu V, Zeng L, Peng H, Wang Y, Danesh FR. Targeting of RhoA/ROCK signaling ameliorates progression of diabetic nephropathy independent of glucose control. Diabetes. 2008;57:714–23.

    Article  CAS  PubMed  Google Scholar 

  37. Arita R, Hata Y, Nakao S, Kita T, Miura M, Kawahara S, et al. Rho kinase inhibition by fasudil ameliorates diabetes-induced microvascular damage. Diabetes. 2009;58:215–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu X, Xing Y, Liu X, Zeng L, Ma J. Opticin ameliorates hypoxia-induced retinal angiogenesis by suppression of integrin α2-I domain-collagen complex formation and RhoA/ROCK1 signaling. Invest Ophthalmol Vis Sci. 2022;63:13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. de Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N, Williams LT. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science. 1992;255:989–91.

    Article  PubMed  Google Scholar 

  40. Terman BI, Dougher-Vermazen M, Carrion ME, Dimitrov D, Armellino DC, Gospodarowicz D, et al. Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem Biophys Res Commun. 1992;187:1579–86.

    Article  CAS  PubMed  Google Scholar 

  41. Joukov V, Pajusola K, Kaipainen A, Chilov D, Lahtinen I, Kukk E, et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. 1996;15:290–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Joussen AM, Ricci F, Paris LP, Korn C, Quezada-Ruiz C, Zarbin M. Angiopoietin/Tie2 signalling and its role in retinal and choroidal vascular diseases: a review of preclinical data. Eye. 2021;35:1305–16.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Eklund L, Kangas J, Saharinen P. Angiopoietin-Tie signalling in the cardiovascular and lymphatic systems. Clin Sci. 2017;131:87–103.

    Article  CAS  Google Scholar 

  44. Wang H, Wang X, Liu X, Zhou J, Yang Q, Chai B, et al. miR-199a-5p plays a pivotal role on wound healing via suppressing VEGFA and ROCK1 in diabetic ulcer foot. Oxid Med Cell Longev. 2022;2022:4791059.

    PubMed  PubMed Central  Google Scholar 

  45. Galloway CA, Lee H, Nejjar S, Jhun BS, Yu T, Hsu W, et al. Transgenic control of mitochondrial fission induces mitochondrial uncoupling and relieves diabetic oxidative stress. Diabetes. 2012;61:2093–2104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ding M, Feng N, Tang D, Feng J, Li Z, Jia M, et al. Melatonin prevents Drp1-mediated mitochondrial fission in diabetic hearts through SIRT1-PGC1α pathway. J Pineal Res. 2018;65:e12491.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhang Q, Hu C, Huang J, Liu W, Lai W, Leng F, et al. ROCK1 induces dopaminergic nerve cell apoptosis via the activation of Drp1-mediated aberrant mitochondrial fission in Parkinson’s disease. Exp Mol Med. 2019;51:1–13.

    PubMed  PubMed Central  Google Scholar 

  48. Jäger S, Handschin C, St-Pierre J, Spiegelman BM. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci USA. 2007;104:12017–22.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science. 2011;331:456–61.

    Article  CAS  PubMed  Google Scholar 

  50. Toyama EQ, Herzig S, Courchet J, Lewis TL Jr, Losón OC, Hellberg K, et al. Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science. 2016;351:275–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li J, Wang Y, Wang Y, Wen X, Ma XN, Chen W, et al. Pharmacological activation of AMPK prevents Drp1-mediated mitochondrial fission and alleviates endoplasmic reticulum stress-associated endothelial dysfunction. J Mol Cell Cardiol. 2015;86:62–74.

    Article  CAS  PubMed  Google Scholar 

  52. Zhou H, Wang S, Zhu P, Hu S, Chen Y, Ren J. Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission. Redox Biol. 2018;15:335–46.

    Article  CAS  PubMed  Google Scholar 

  53. Su KH, Yu YB, Hou HH, Zhao JF, Kou YR, Cheng LC, et al. AMP-activated protein kinase mediates erythropoietin-induced activation of endothelial nitric oxide synthase. J Cell Physiol. 2012;227:3053–62.

    Article  CAS  PubMed  Google Scholar 

  54. Copps KD, White MF. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia. 2012;55:2565–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Huang X, McGann JC, Liu BY, Hannoush RN, Lill JR, Pham V, et al. Phosphorylation of Dishevelled by protein kinase RIPK4 regulates Wnt signaling. Science. 2013;339:1441–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu DQ, Li FF, Zhang JB, Zhou TJ, Xue WQ, Zheng XH, et al. Increased RIPK4 expression is associated with progression and poor prognosis in cervical squamous cell carcinoma patients. Sci Rep. 2015;5:11955.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Holland P, Willis C, Kanaly S, Glaccum M, Warren A, Charrier K, et al. RIP4 is an ankyrin repeat-containing kinase essential for keratinocyte differentiation. Curr Biol. 2002;12:1424–8.

    Article  CAS  PubMed  Google Scholar 

  58. Rountree RB, Willis CR, Dinh H, Blumberg H, Bailey K, Dean C Jr, et al. RIP4 regulates epidermal differentiation and cutaneous inflammation. J Invest Dermatol. 2010;130:102–12.

    Article  CAS  PubMed  Google Scholar 

  59. Adams S, Pankow S, Werner S, Munz B. Regulation of NF-kappaB activity and keratinocyte differentiation by the RIP4 protein: implications for cutaneous wound repair. J Invest Dermatol. 2007;127:538–44.

    Article  CAS  PubMed  Google Scholar 

  60. Oberbeck N, Pham VC, Webster JD, Reja R, Huang CS, Zhang Y, et al. The RIPK4-IRF6 signalling axis safeguards epidermal differentiation and barrier function. Nature. 2019;574:249–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 92168120, 81974506, and 81673486 to LT, No. 81874318, 81673453, 81473235 and 82073878 to XJL, No. 82204494 to YQD), the Beijing Natural Science Foundation (No. Z200019 and 7172119 to LT, No. 7232092 to YQD), Xinjiang Uygur Autonomous Region Key Research and Development Program (No. 2023B02010 to LT), the “Capital Clinical Diagnosis and Treatment Technology Research and Demonstration Application” project commissioned by the Beijing Municipal Commission of Science and Technology (NO. Z191100006619016 to LZ).

Author information

Authors and Affiliations

Authors

Contributions

TRHY conceived the idea and designed the study. TRHY, LF, ZYZ performed the experiments and analyzed the data. LF, ZYZ and PW wrote the manuscript. ZRH and QM participated in the laser doppler measurements. YDS helped with the immunohistochemistry. JHZ, YQD, CYG, XJL, WHW helped to draft the manuscript. LT and LZ participated in the design and reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Long Zhang or Lu Tie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huyan, T., Fan, L., Zheng, Zy. et al. ROCK1 inhibition improves wound healing in diabetes via RIPK4/AMPK pathway. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01246-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01246-3

Keywords

Search

Quick links