Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intestinal epithelial Krüppel-like factor 4 alleviates endotoxemia and atherosclerosis through improving NF-κB/miR-34a-mediated intestinal permeability

Abstract

Maintenance of intestinal barrier function contributes to gastrointestinal homeostasis and therefore cardiovascular diseases. A number of studies show that intestinal permeability is affected by excessive inflammatory responses. Krüppel-like factor (KLF) 4 is one of the critical transcriptional factors, which controls multiple immune responses. In this study we investigated the role of KLF4 in regulating intestinal inflammation and permeability during the atherosclerotic process. Atherosclerotic model was established in ApoE−/− mice by feeding a high fat high cholesterol (HFHC) diet. We showed that colon expression levels of KLF4 and tight junction proteins were significantly decreased whereas inflammatory responses increased in atherosclerotic mice. Overexpression of colon epithelial Klf4 decreased atherosclerotic plaque formation and vascular inflammation in atherosclerotic mice, accompanied by remarkable suppression of intestinal NF-κB activation. We found that overexpression of epithelial Klf4 in atherosclerotic mice significantly increased intestinal tight junction expression and ameliorated endotoxemia, whereas replenishment of LPS abolished these benefits. Overexpression of Klf4 reversed LPS-induced permeability and downregulation of ZO-1 and Occludin in Caco-2 cells in vitro. HFHC diet stimulated the expression of epithelial microRNA-34a, whereas silence of epithelial Klf4 abolished the benefits of microRNA-34a sponge, a specific miR-34a inhibitor, on intestinal permeability and atherosclerotic development. A clinical cohort of 24 atherosclerotic patients supported colon KLF4/NF-κB/tight junction protein axis mediated intestine/cardiovascular interaction in patients with atherosclerosis. Taken together, intestinal epithelial KLF4 protects against intestinal inflammation and barrier dysfunction, ameliorating atherosclerotic plaque formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Intestinal expression of KLF4 is associated with intestinal inflammation and plaque formation in atherosclerotic mice.
Fig. 2: Intestinal overexpression of epithelial Klf4 alleviates atherosclerotic plaque formation and vascular inflammation in atherosclerotic mice.
Fig. 3: Intestinal overexpression of Klf4 decreases intestinal permeability in atherosclerotic mice.
Fig. 4: KLF4 inhibited NF-κB activation-mediated colic inflammation.
Fig. 5: Supplementation of lipopolysaccharide abolishes the anti-atherosclerotic benefits of intestinal overexpression of Klf4.
Fig. 6: Intestinal miR-34a/KLF4 signaling mediates intestinal permeability in ApoE−/− mice.
Fig. 7: Intestinal miR-34a/KLF4 signaling regulates atherosclerotic process in ApoE−/− mice.
Fig. 8: Intestinal KLF4/tight junction signaling is closely associated with human atherosclerotic process.

Similar content being viewed by others

References

  1. Gill SK, Rossi M, Bajka B, Whelan K. Dietary fibre in gastrointestinal health and disease. Nat Rev Gastroenterol Hepatol. 2021;18:101–16.

    Article  CAS  PubMed  Google Scholar 

  2. Adolph TE, Meyer M, Schwarzler J, Mayr L, Grabherr F, Tilg H. The metabolic nature of inflammatory bowel diseases. Nat Rev Gastroenterol Hepatol. 2022;19:753–67.

    Article  PubMed  Google Scholar 

  3. Buckley A, Turner JR. Cell biology of tight junction barrier regulation and mucosal disease. Cold Spring Harb Perspect Biol. 2018;10:a029314.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Slifer ZM, Blikslager AT. The integral role of tight junction proteins in the repair of injured intestinal epithelium. Int J Mol Sci. 2020;21:972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sharma D, Malik A, Guy CS, Karki R, Vogel P, Kanneganti TD. Pyrin inflammasome regulates tight junction integrity to restrict colitis and tumorigenesis. Gastroenterology. 2018;154:948–64 e8.

    Article  CAS  PubMed  Google Scholar 

  6. Kuo WT, Shen L, Zuo L, Shashikanth N, Ong M, Wu L, et al. Inflammation-induced occludin downregulation limits epithelial apoptosis by suppressing caspase-3 expression. Gastroenterology. 2019;157:1323–37.

    Article  CAS  PubMed  Google Scholar 

  7. Li J, Lin S, Vanhoutte PM, Woo CW, Xu A. Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in ApoE−/− mice. Circulation. 2016;133:2434–46.

    Article  CAS  PubMed  Google Scholar 

  8. Nie H, Xiong Q, Lan G, Song C, Yu X, Chen L, et al. Sivelestat alleviates atherosclerosis by improving intestinal barrier function and reducing endotoxemia. Front Pharmacol. 2022;13:838688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pan Y, Hui X, Hoo RLC, Ye D, Chan CYC, Feng T, et al. Adipocyte-secreted exosomal microRNA-34a inhibits M2 macrophage polarization to promote obesity-induced adipose inflammation. J Clin Invest. 2019;129:834–49.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kapoor N, Niu J, Saad Y, Kumar S, Sirakova T, Becerra E, et al. Transcription factors STAT6 and KLF4 implement macrophage polarization via the dual catalytic powers of MCPIP. J Immunol. 2015;194:6011–23.

    Article  CAS  PubMed  Google Scholar 

  11. Khan MJ, Singh P, Dohare R, Jha R, Rahmani AH, Almatroodi SA, et al. Inhibition of miRNA-34a promotes M2 macrophage polarization and improves LPS-induced lung injury by targeting Klf4. Genes. 2020;11:966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ghaleb AM, McConnell BB, Kaestner KH, Yang VW. Altered intestinal epithelial homeostasis in mice with intestine-specific deletion of the Kruppel-like factor 4 gene. Dev Biol. 2011;349:310–20.

    Article  CAS  PubMed  Google Scholar 

  13. Tong L, Tang C, Cai C, Guan X. Upregulation of the microRNA rno-miR-146b-5p may be involved in the development of intestinal injury through inhibition of Kruppel-like factor 4 in intestinal sepsis. Bioengineered. 2020;11:1334–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li B, Dou Z, Zhang L, Zhu L, Cao Y, Yu Q. Ghrelin alleviates intestinal dysfunction in sepsis through the KLF4/MMP2 regulatory axis by activating SIRT1. Front Immunol. 2021;12:646775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen X, Wen J, Liu C, Guo D. KLF4 downregulates FGF21 to activate inflammatory injury and oxidative stress of LPSinduced ATDC5 cells via SIRT1/NFkappaB/p53 signaling. Mol Med Rep. 2022;25:164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu Y, Xu Y, Zhu Y, Sun H, Juguilon C, Li F, et al. Macrophage miR-34a is a key regulator of cholesterol efflux and atherosclerosis. Mol Ther J Am Soc Gene Ther. 2020;28:202–16.

    Article  CAS  Google Scholar 

  17. Song L, Chen TY, Zhao XJ, Xu Q, Jiao RQ, Li JM, et al. Pterostilbene prevents hepatocyte epithelial-mesenchymal transition in fructose-induced liver fibrosis through suppressing miR-34a/Sirt1/p53 and TGF-beta1/Smads signalling. Br J Pharmacol. 2019;176:1619–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wells CL, Jechorek RP, Olmsted SB, Erlandsen SL. Effect of LPS on epithelial integrity and bacterial uptake in the polarized human enterocyte-like cell line Caco-2. Circ Shock. 1993;40:276–88.

    CAS  PubMed  Google Scholar 

  19. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9:313–23.

    Article  CAS  PubMed  Google Scholar 

  20. Wang Y, Li D, Jia Z, Hui J, Xin Q, Zhou Q, et al. A bibliometric analysis of research on the links between gut microbiota and atherosclerosis. Front Cardiovasc Med. 2022;9:941607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Graham DB, Xavier RJ. Pathway paradigms revealed from the genetics of inflammatory bowel disease. Nature. 2020;578:527–39.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen K, Shao LH, Wang F, Shen XF, Xia XF, Kang X, et al. Netting gut disease: neutrophil extracellular trap in intestinal pathology. Oxid Med Cell Longev. 2021;2021:5541222.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol. 2011;11:750–61.

    Article  CAS  PubMed  Google Scholar 

  24. Shen Y, Hong H, Sangwung P, Lapping S, Nayak L, Zhang L, et al. Kruppel-like factor 4 regulates neutrophil activation. Blood Adv. 2017;1:662–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liao X, Sharma N, Kapadia F, Zhou G, Lu Y, Hong H, et al. Kruppel-like factor 4 regulates macrophage polarization. J Clin Invest. 2011;121:2736–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ghaleb AM, Yang VW. Kruppel-like factor 4 (KLF4): What we currently know. Gene. 2017;611:27–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fu C, Hao S, Xu X, Zhou J, Liu Z, Lu H, et al. Activation of SIRT1 ameliorates LPS-induced lung injury in mice via decreasing endothelial tight junction permeability. Acta Pharmacol Sin. 2019;40:630–41.

    Article  CAS  PubMed  Google Scholar 

  28. Haghikia A, Zimmermann F, Schumann P, Jasina A, Roessler J, Schmidt D, et al. Propionate attenuates atherosclerosis by immune-dependent regulation of intestinal cholesterol metabolism. Eur Heart J. 2022;43:518–33.

    Article  CAS  PubMed  Google Scholar 

  29. Yoshida N, Emoto T, Yamashita T, Watanabe H, Hayashi T, Tabata T, et al. Bacteroides vulgatus and bacteroides dorei reduce gut microbial lipopolysaccharide production and inhibit atherosclerosis. Circulation. 2018;138:2486–98.

    Article  CAS  PubMed  Google Scholar 

  30. Yu T, Chen X, Lin T, Liu J, Li M, Zhang W, et al. KLF4 deletion alters gastric cell lineage and induces MUC2 expression. Cell Death Dis. 2016;7:e2255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Guangdong Basic and Applied Basic Research Foundation (2023A1515030096), Basic Research Fund of Shenzhen Science and Technology Innovation Commission (JCYJ20220530154002006 and JCYJ20220530154003007), National Natural Science Foundation of China (81902113), Medical Scientific Research Foundation of Guangdong Province (A2022308), and Scientific Research Foundation for Young Teacher of Shenzhen University (000002111207).

Author information

Authors and Affiliations

Authors

Contributions

HZRN, XHY, HQH and TY performed the experiments and analyzed data. HZRN, YWZ, CGY, and LFL discussed data. HZRN drafted the manuscript. YWZ guided the clinical experiments, and YP designed, guided the whole study and edited manuscript.

Corresponding author

Correspondence to Yong Pan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, Hzr., Zhou, Yw., Yu, Xh. et al. Intestinal epithelial Krüppel-like factor 4 alleviates endotoxemia and atherosclerosis through improving NF-κB/miR-34a-mediated intestinal permeability. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01238-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01238-3

Keywords

Search

Quick links