Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DsbA-L ameliorates renal aging and renal fibrosis by maintaining mitochondrial homeostasis

Abstract

Renal fibrosis is the final pathological change in renal disease, and aging is closely related to renal fibrosis. Mitochondrial dysfunction has been reported to play an important role in aging, but the exact mechanism remains unclear. Disulfide-bond A oxidoreductase-like protein (DsbA-L) is mainly located in mitochondria and plays an important role in regulating mitochondrial function and endoplasmic reticulum (ER) stress. However, the role of DsbA-L in renal aging has not been reported. In this study, we showed a reduction in DsbA-L expression, the disruption of mitochondrial function and an increase in fibrosis in the kidneys of 12- and 24-month-old mice compared to young mice. Furthermore, the deterioration of mitochondrial dysfunction and fibrosis were observed in DsbA-L−/− mice with D-gal-induced accelerated aging. Transcriptome analysis revealed a decrease in Flt4 expression and inhibition of the PI3K-AKT signaling pathway in DsbA-L−/− mice compared to control mice. Accelerated renal aging could be alleviated by an AKT agonist (SC79) or a mitochondrial protector (MitoQ) in mice with D-gal-induced aging. In vitro, overexpression of DsbA-L in HK-2 cells restored the expression of Flt4, AKT pathway factors, SP1 and PGC-1α and alleviated mitochondrial damage and cell senescence. These beneficial effects were partially blocked by inhibiting Flt4. Finally, activating the AKT pathway or improving mitochondrial function with chemical reagents could alleviate cell senescence. Our results indicate that the DsbA-L/AKT/PGC-1α signaling pathway could be a therapeutic target for age-related renal fibrosis and is associated with mitochondrial dysfunction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DsbA-L expression was downregulated, and cellular senescence was observed in aging kidneys.
Fig. 2: Disturbed mitochondrial homeostasis was observed in aging renal tissue.
Fig. 3: Aggravated cellular senescence and fibrosis levels in the kidneys of DsbA-L gene-deficient mice.
Fig. 4: Decreased Flt4 and inhibited AKT/SP1/PGC1α signaling were observed in the kidneys of DsbA-L-knockout mice.
Fig. 5: AKT agonists (SC79) and mitochondrial protectants (MitoQ) significantly ameliorated cellular senescence and fibrosis levels in the kidneys of aging mice.
Fig. 6: Overexpression of DsbA-L restored Flt4 expression and ameliorated mitochondrial function, cellular senescence, and fibrosis in D-gal-treated HK-2 cells.
Fig. 7: AKT agonists (SC79) and mitochondrial protectants (MitoQ) significantly ameliorated cellular senescence and fibrosis levels in D-gal-treated HK-2 cells.

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Calcinotto A, Kohli J, Zagato E, Pellegrini L, Demaria M, Alimonti A. Cellular senescence: aging, cancer, and injury. Physiol Rev. 2019;99:1047–78.

    Article  CAS  PubMed  Google Scholar 

  2. Amorim JA, Coppotelli G, Rolo AP, Palmeira CM, Ross JM, Sinclair DA. Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nat Rev Endocrinol. 2022;18:243–58.

    Article  PubMed  PubMed Central  Google Scholar 

  3. North BJ, Sinclair DA. The intersection between aging and cardiovascular disease. Circ Res. 2012;110:1097–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schaeffner ES, Ebert N, Delanaye P, Frei U, Gaedeke J, Jakob O, et al. Two novel equations to estimate kidney function in persons aged 70 years or older. Ann Intern Med. 2012;157:471–81.

    Article  PubMed  Google Scholar 

  5. Ameh OI, Okpechi IG, Dandara C, Kengne AP. Association between telomere length, chronic kidney disease, and renal traits: a systematic review. OMICS. 2017;21:143–55.

    Article  CAS  PubMed  Google Scholar 

  6. Cobo G, Lindholm B, Stenvinkel P. Chronic inflammation in end-stage renal disease and dialysis. Nephrol Dial Transpl. 2018;33:iii35–iii40.

    Article  CAS  Google Scholar 

  7. Frassetto LA, Sebastian A, DuBose TD. How metabolic acidosis and kidney disease may accelerate the aging process. Eur J Clin Nutr. 2020;74:27–32.

    Article  CAS  PubMed  Google Scholar 

  8. Yang M, Li C, Yang S, Xiao Y, Chen W, Gao P, et al. Mitophagy: a novel therapeutic target for treating DN. Curr Med Chem. 2021;28:2717–28.

    Article  CAS  PubMed  Google Scholar 

  9. Son JM, Lee C. Mitochondria: multifaceted regulators of aging. BMB Rep. 2019;52:13–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liochev SI. Reactive oxygen species and the free radical theory of aging. Free Radic Biol Med. 2013;60:1–4.

    Article  CAS  PubMed  Google Scholar 

  11. Miao J, Liu J, Niu J, Zhang Y, Shen W, Luo C, et al. Wnt/β-catenin/RAS signaling mediates age-related renal fibrosis and is associated with mitochondrial dysfunction. Aging Cell. 2019;18:e13004.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gao F, Fang Q, Zhang R, Lu J, Lu H, Wang C, et al. Polymorphism of DsbA-L gene associates with insulin secretion and body fat distribution in Chinese population. Endocr J. 2009;56:487–94.

    Article  CAS  PubMed  Google Scholar 

  13. Bai J, Cervantes C, Liu J, He S, Zhou H, Zhang B, et al. DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA release-activated cGAS-cGAMP-STING pathway. Proc Natl Acad Sci USA. 2017;114:12196–201.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  14. Chen X, Han Y, Gao P, Yang M, Xiao L, Xiong X, et al. Disulfide-bond a oxidoreductase-like protein protects against ectopic fat deposition and lipid-related kidney damage in diabetic nephropathy. Kidney Int. 2019;95:880–95.

    Article  CAS  PubMed  Google Scholar 

  15. Chen H, Bai J, Dong F, Fang H, Zhang Y, Meng W, et al. Hepatic DsbA-L protects mice from diet-induced hepatosteatosis and insulin resistance. FASEB J. 2017;31:2314–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gao P, Yang M, Chen X, Xiong S, Liu J, Sun L. DsbA-L deficiency exacerbates mitochondrial dysfunction of tubular cells in diabetic kidney disease. Clin Sci. 2020;134:677–94.

    Article  CAS  Google Scholar 

  17. Yang M, Zhao L, Gao P, Zhu X, Han Y, Chen X, et al. DsbA-L ameliorates high glucose induced tubular damage through maintaining MAM integrity. EBioMedicine. 2019;43:607–19.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wang L, Tang XQ, Shi Y, Li HM, Meng ZY, Chen H, et al. Tetrahydroberberrubine retards heart aging in mice by promoting PHB2-mediated mitophagy. Acta Pharm Sin. 2023;44:332–44.

    Article  CAS  Google Scholar 

  19. Shi S-R, Shi Y, Taylor CR. Antigen retrieval immunohistochemistry: review and future prospects in research and diagnosis over two decades. J Histochem Cytochem. 2011;59:13–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Valavanidis A, Vlachogianni T, Fiotakis C. 8-hydroxy-2’ -deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2009;27:120–39.

    Article  CAS  PubMed  Google Scholar 

  21. Mortuza R, Chen S, Feng B, Sen S, Chakrabarti S. High glucose induced alteration of SIRTs in endothelial cells causes rapid aging in a p300 and FOXO regulated pathway. PLoS ONE. 2013;8:e54514.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  22. Li J, Gao F, Wei L, Chen L, Qu N, Zeng L, et al. Predict the role of lncRNA in kidney aging based on RNA sequencing. BMC Genomics. 2022;23:254.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li C, Li L, Yang M, Yang J, Zhao C, Han Y, et al. PACS-2 ameliorates tubular injury by facilitating endoplasmic reticulum-mitochondria contact and mitophagy in diabetic nephropathy. Diabetes. 2022;71:1034–50.

    Article  CAS  PubMed  Google Scholar 

  24. Akbari M, Kirkwood TBL, Bohr VA. Mitochondria in the signaling pathways that control longevity and health span. Ageing Res Rev. 2019;54:100940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu NN, Zhang Y, Ren J. Mitophagy, mitochondrial dynamics, and homeostasis in cardiovascular aging. Oxid Med Cell Longev. 2019;2019:9825061.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Leduc-Gaudet JP, Hussain SNA, Barreiro E, Gouspillou G. Mitochondrial dynamics and mitophagy in skeletal muscle health and aging. Int J Mol Sci. 2021;22:8179.

  27. Monaghan RM, Page DJ, Ostergaard P, Keavney BD. The physiological and pathological functions of VEGFR3 in cardiac and lymphatic development and related diseases. Cardiovasc Res. 2021;117:1877–90.

    Article  CAS  PubMed  Google Scholar 

  28. Zhao L, Zhu Z, Yao C, Huang Y, Zhi E, Chen H, et al. VEGFC/VEGFR3 signaling regulates mouse spermatogonial cell proliferation via the activation of AKT/MAPK and cyclin D1 pathway and mediates the apoptosis by affecting caspase 3/9 and Bcl-2. Cell Cycle. 2018;17:225–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lin QY, Zhang YL, Bai J, Liu JQ, Li HH. VEGF-C/VEGFR-3 axis protects against pressure-overload induced cardiac dysfunction through regulation of lymphangiogenesis. Clin Transl Med. 2021;11:e374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jin HO, An S, Lee HC, Woo SH, Seo SK, Choe TB, et al. Hypoxic condition- and high cell density-induced expression of Redd1 is regulated by activation of hypoxia-inducible factor-1alpha and Sp1 through the phosphatidylinositol 3-kinase/Akt signaling pathway. Cell Signal. 2007;19:1393–403.

    Article  CAS  PubMed  Google Scholar 

  31. Lin HY, Chen YS, Wang K, Chien HW, Hsieh YH, Yang SF. Fisetin inhibits epidermal growth factor-induced migration of ARPE-19 cells by suppression of AKT activation and Sp1-dependent MMP-9 expression. Mol Vis. 2017;23:900–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu Y, Liao R, Qiang Z, Zhang C. Pro-inflammatory cytokine-driven PI3K/Akt/Sp1 signalling and H2S production facilitates the pathogenesis of severe acute pancreatitis. Biosci Rep. 2017;37:BSR20160483.

  33. Yin P, Zhao C, Li Z, Mei C, Yao W, Liu Y, et al. Sp1 is involved in regulation of cystathionine γ-lyase gene expression and biological function by PI3K/Akt pathway in human hepatocellular carcinoma cell lines. Cell Signal. 2012;24:1229–40.

    Article  CAS  PubMed  Google Scholar 

  34. Park G, Horie T, Kanayama T, Fukasawa K, Iezaki T, Onishi Y, et al. The transcriptional modulator Ifrd1 controls PGC-1α expression under short-term adrenergic stimulation in brown adipocytes. FEBS J. 2017;284:784–95.

    Article  CAS  PubMed  Google Scholar 

  35. Suh J, Kim NK, Shim W, Lee SH, Kim HJ, Moon E, et al. Mitochondrial fragmentation and donut formation enhance mitochondrial secretion to promote osteogenesis. Cell Metab. 2023;35:345-360.e7.

  36. Burke PJ. Mitochondria, bioenergetics and apoptosis in cancer. Trends Cancer. 2017;3:857–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Quadri MM, Fatima SS, Che RC, Zhang AH. Mitochondria and renal fibrosis. Adv Exp Med Biol. 2019;1165:501–24.

    Article  CAS  PubMed  Google Scholar 

  38. Sun J, Zhang J, Tian J, Virzì GM, Digvijay K, Cueto L, et al. Mitochondria in sepsis-induced AKI. J Am Soc Nephrol. 2019;30:1151–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang X, Agborbesong E, Li X. The role of mitochondria in acute kidney injury and chronic kidney disease and its therapeutic potential. Int J Mol Sci. 2021;22:11253.

  40. Sanz A, Fernández-Ayala DJM, Stefanatos RK, Jacobs HT. Mitochondrial ROS production correlates with, but does not directly regulate lifespan in Drosophila. Aging. 2010;2:200–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kerr JS, Adriaanse BA, Greig NH, Mattson MP, Cader MZ, Bohr VA, et al. Mitophagy and Alzheimer’s disease: cellular and molecular mechanisms. Trends Neurosci. 2017;40:151–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 2013;20:31–42.

    Article  CAS  PubMed  Google Scholar 

  43. Mohammad RS, Lokhandwala MF, Banday AA. Age-related mitochondrial impairment and renal injury is ameliorated by sulforaphane via activation of transcription factor NRF2. Antioxidants. 2022;11:156.

  44. Rera M, Bahadorani S, Cho J, Koehler CL, Ulgherait M, Hur JH, et al. Modulation of longevity and tissue homeostasis by the Drosophila PGC-1 homolog. Cell Metab. 2011;14:623–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bharath LP, Agrawal M, McCambridge G, Nicholas DA, Hasturk H, Liu J, et al. Metformin enhances autophagy and normalizes mitochondrial function to alleviate aging-associated inflammation. Cell Metab. 2020;32:44-55.e6.

  46. Salazar G, Cullen A, Huang J, Zhao Y, Serino A, Hilenski L, et al. SQSTM1/p62 and PPARGC1A/PGC-1alpha at the interface of autophagy and vascular senescence. Autophagy. 2020;16:1092–110.

    Article  CAS  PubMed  Google Scholar 

  47. Fontecha-Barriuso M, Martin-Sanchez D, Martinez-Moreno JM, Monsalve M, Ramos AM, Sanchez-Niño MD, et al. The role of PGC-1α and mitochondrial biogenesis in kidney diseases. Biomolecules. 2020; 10.

  48. Chandrasekaran K, Anjaneyulu M, Choi J, Kumar P, Salimian M, Ho C-Y, et al. Role of mitochondria in diabetic peripheral neuropathy: Influencing the NAD+-dependent SIRT1-PGC-1α-TFAM pathway. Int Rev Neurobiol. 2019;145:177–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liang D, Zhuo Y, Guo Z, He L, Wang X, He Y, et al. SIRT1/PGC-1 pathway activation triggers autophagy/mitophagy and attenuates oxidative damage in intestinal epithelial cells. Biochimie. 2020;170:10–20.

    Article  CAS  PubMed  Google Scholar 

  50. Kim EN, Lim JH, Kim MY, Kim HW, Park CW, Chang YS, et al. PPARα agonist, fenofibrate, ameliorates age-related renal injury. Exp Gerontol. 2016;81:42–50.

    Article  CAS  PubMed  Google Scholar 

  51. Liu M, Chen H, Wei L, Hu D, Dong K, Jia W, et al. Endoplasmic reticulum (ER) localization is critical for DsbA-L protein to suppress ER stress and adiponectin down-regulation in adipocytes. J Biol Chem. 2015;290:10143–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ito Y, Betsuyaku T, Nagai K, Nasuhara Y, Nishimura M. Expression of pulmonary VEGF family declines with age and is further down-regulated in lipopolysaccharide (LPS)-induced lung injury. Exp Gerontol. 2005;40:315–23.

    Article  CAS  PubMed  Google Scholar 

  53. Papadogianni G, Ravens I, Dittrich-Breiholz O, Bernhardt G, Georgiev H. Impact of aging on the phenotype of invariant natural killer T cells in mouse thymus. Front Immunol. 2020;11:575764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jiang Q, Ji A, Li D, Shi L, Gao M, Lv N, et al. Mitochondria damage in ambient particulate matter induced cardiotoxicity: roles of PPAR alpha/PGC-1 alpha signaling. Environ Pollut. 2021;288:117792.

    Article  CAS  PubMed  Google Scholar 

  55. He W, Wang P, Chen Q, Li C. Exercise enhances mitochondrial fission and mitophagy to improve myopathy following critical limb ischemia in elderly mice via the PGC1a/FNDC5/irisin pathway. Skelet Muscle. 2020;10:25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Xiong Y, Liu Z, Zhao X, Ruan S, Zhang X, Wang S, et al. CPT1A regulates breast cancer-associated lymphangiogenesis via VEGF signaling. Biomed Pharmacother. 2018;106:1–7.

    Article  CAS  PubMed  Google Scholar 

  57. Yang M, Luo S, Jiang N, Wang X, Han Y, Zhao H, et al. DsbA-L ameliorates renal injury through the AMPK/NLRP3 inflammasome signaling pathway in diabetic nephropathy. Front Physiol. 2021;12:659751.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yao Q, Li S, Cheng X, Zou Y, Shen Y, Zhang S. Yin Zhi Huang, a traditional Chinese herbal formula, ameliorates diet-induced obesity and hepatic steatosis by activating the AMPK/SREBP-1 and the AMPK/ACC/CPT1A pathways. Ann Transl Med. 2020;8:231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhu Z, Zhou W, Yang Y, Wang K, Li F, Dang Y. Quantitative profiling of oxylipin reveals the mechanism of Pien-Tze-Huang on alcoholic liver disease. Evid Based Complement Altern Med. 2021;2021:9931542.

    Google Scholar 

  60. Lin CW, Peng YJ, Lin YY, Mersmann HJ, Ding ST. LRRK2 regulates CPT1A to promote β-oxidation in HepG2 cells. Molecules. 2020;25:4122.

Download references

Acknowledgements

This work was supported by grants from the Natural Science Foundation of Hunan Province (2021JC0003).

Author information

Authors and Affiliations

Authors

Contributions

MY and YL performed the experiments and wrote the manuscript. SLL, CBL, NJ, CRL, HZ, YCH, WC, and LL provided technical support for this study and participated in discussions about this study. MY and LS designed this study and edited this manuscript. LS is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Lin Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Liu, Y., Luo, Sl. et al. DsbA-L ameliorates renal aging and renal fibrosis by maintaining mitochondrial homeostasis. Acta Pharmacol Sin 45, 777–789 (2024). https://doi.org/10.1038/s41401-023-01216-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01216-1

Keywords

Search

Quick links