Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

GPCRs involved in metabolic diseases: pharmacotherapeutic development updates

Abstract

G protein-coupled receptors (GPCRs) are expressed in a variety of cell types and tissues, and activation of GPCRs is involved in enormous metabolic pathways, including nutrient synthesis, transportation, storage or insulin sensitivity, etc. This review intends to summarize the regulation of metabolic homeostasis and mechanisms by a series of GPCRs, such as GPR91, GPR55, GPR119, GPR109a, GPR142, GPR40, GPR41, GPR43 and GPR120. With deep understanding of GPCR’s structure and signaling pathways, it is attempting to uncover the role of GPCRs in major metabolic diseases, including metabolic syndrome, diabetes, dyslipidemia and nonalcoholic steatohepatitis, for which the global prevalence has risen during last two decades. An extensive list of agonists and antagonists with their chemical structures in a nature of small molecular compounds for above-mentioned GPCRs is provided as pharmacologic candidates, and their preliminary data of preclinical studies are discussed. Moreover, their beneficial effects in correcting abnormalities of metabolic syndrome, diabetes and dyslipidemia are summarized when clinical trials have been undertaken. Thus, accumulating data suggest that these agonists or antagonists might become as new pharmacotherapeutic candidates for the treatment of metabolic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Signaling pathways and metabolic effects GPCRs.
Fig. 2: Pharmacologic mechanisms of GPR55 antagonists in metabolic disorders.
Fig. 3: Promotional role of GPR142 agonists for potential treatment of type 2 diabetes.

Similar content being viewed by others

Data availability

The authors declare that all the data supporting the findings of this study are contained within the paper.

References

  1. Chew NWS, Ng CH, Tan DJH, Kong G, Lin C, Chin YH, et al. The global burden of metabolic disease: Data from 2000 to 2019. Cell Metab. 2023;35:414–28. e3

    Article  CAS  PubMed  Google Scholar 

  2. Moran BM, McKillop AM, O’Harte FP. Development of novel ligands for peptide GPCRs. Curr Opin Pharmacol. 2016;31:57–62.

    Article  CAS  PubMed  Google Scholar 

  3. Pandy-Szekeres G, Caroli J, Mamyrbekov A, Kermani AA, Keseru GM, Kooistra AJ, et al. GPCRdb in 2023: state-specific structure models using AlphaFold2 and new ligand resources. Nucleic Acids Res. 2023;51:D395–D402.

    Article  CAS  PubMed  Google Scholar 

  4. Vass M, Kooistra AJ, Yang D, Stevens RC, Wang MW, de Graaf C. Chemical diversity in the G protein-coupled receptor superfamily. Trends Pharmacol Sci. 2018;39:494–512.

    Article  CAS  PubMed  Google Scholar 

  5. Gilissen J, Jouret F, Pirotte B, Hanson J. Insight into SUCNR1 (GPR91) structure and function. Pharmacol Ther. 2016;159:56–65.

    Article  CAS  PubMed  Google Scholar 

  6. Hilger D, Masureel M, Kobilka BK. Structure and dynamics of GPCR signaling complexes. Nat Struct Mol Biol. 2018;25:4–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Venkatakrishnan AJ, Flock T, Prado DE, Oates ME, Gough J, Madan Babu M. Structured and disordered facets of the GPCR fold. Curr Opin Struct Biol. 2014;27:129–37.

    Article  CAS  PubMed  Google Scholar 

  8. Tennakoon M, Senarath K, Kankanamge D, Ratnayake K, Wijayaratna D, Olupothage K, et al. Subtype-dependent regulation of Gbetagamma signalling. Cell Signal. 2021;82:109947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li X, Xie L, Qu X, Zhao B, Fu W, Wu B, et al. GPR91, a critical signaling mechanism in modulating pathophysiologic processes in chronic illnesses. FASEB J. 2020;34:13091–105.

    Article  CAS  PubMed  Google Scholar 

  10. Chu ZL, Jones RM, He H, Carroll C, Gutierrez V, Lucman A, et al. A role for beta-cell-expressed G protein-coupled receptor 119 in glycemic control by enhancing glucose-dependent insulin release. Endocrinology. 2007;148:2601–9.

    Article  CAS  PubMed  Google Scholar 

  11. Plaisance EP, Grandjean PW, Brunson BL, Judd RL. Increased total and high-molecular-weight adiponectin after extended-release niacin. Metabolism. 2008;57:404–9.

    Article  CAS  PubMed  Google Scholar 

  12. Cheng J, Yang Z, Ge XY, Gao MX, Meng R, Xu X, et al. Autonomous sensing of the insulin peptide by an olfactory G protein-coupled receptor modulates glucose metabolism. Cell Metab. 2022;34:240–55. e10

    Article  CAS  PubMed  Google Scholar 

  13. Shenoy SK, McDonald PH, Kohout TA, Lefkowitz RJ. Regulation of receptor fate by ubiquitination of activated beta 2-adrenergic receptor and beta-arrestin. Science. 2001;294:1307–13.

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Dong JH, Wang YJ, Cui M, Wang XJ, Zheng WS, Ma ML, et al. Adaptive activation of a stress response pathway improves learning and memory through Gs and beta-arrestin-1-regulated lactate metabolism. Biol Psychiatry. 2017;81:654–70.

    Article  CAS  PubMed  Google Scholar 

  15. Du YQ, Sha XY, Cheng J, Wang J, Lin JY, An WT, et al. Endogenous lipid-GPR120 signaling modulates pancreatic islet homeostasis to different extents. Diabetes. 2022;71:1454–71.

    Article  CAS  PubMed  Google Scholar 

  16. He W, Miao FJ, Lin DC, Schwandner RT, Wang Z, Gao J, et al. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature. 2004;429:188–93.

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Krebs HA. Rate control of the tricarboxylic acid cycle. Adv Enzym Regul. 1970;8:335–53.

    Article  CAS  Google Scholar 

  18. Sapieha P, Sirinyan M, Hamel D, Zaniolo K, Joyal JS, Cho JH, et al. The succinate receptor GPR91 in neurons has a major role in retinal angiogenesis. Nat Med. 2008;14:1067–76.

    Article  CAS  PubMed  Google Scholar 

  19. Toma I, Kang JJ, Sipos A, Vargas S, Bansal E, Hanner F, et al. Succinate receptor GPR91 provides a direct link between high glucose levels and renin release in murine and rabbit kidney. J Clin Invest. 2008;118:2526–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Davili Z, Johar S, Hughes C, Kveselis D, Hoo J. Succinate dehydrogenase deficiency associated with dilated cardiomyopathy and ventricular noncompaction. Eur J Pediatr. 2007;166:867–70.

    Article  PubMed  Google Scholar 

  21. Komers R, Lindsley JN, Oyama TT, Cohen DM, Anderson S. Renal p38 MAP kinase activity in experimental diabetes. Lab Invest. 2007;87:548–58.

    Article  CAS  PubMed  Google Scholar 

  22. Chen H, Jin C, Xie L, Wu J. Succinate as a signaling molecule in the mediation of liver diseases. Biochim Biophys Acta Mol Basis Dis. 2023;1870:166935.

    Article  PubMed  Google Scholar 

  23. Ariza AC, Deen PM, Robben JH. The succinate receptor as a novel therapeutic target for oxidative and metabolic stress-related conditions. Front Endocrinol. 2012;3:22.

    Article  Google Scholar 

  24. Sadagopan N, Li W, Roberds SL, Major T, Preston GM, Yu Y, et al. Circulating succinate is elevated in rodent models of hypertension and metabolic disease. Am J Hypertens. 2007;20:1209–15.

    CAS  PubMed  Google Scholar 

  25. Regard JB, Sato IT, Coughlin SR. Anatomical profiling of G protein-coupled receptor expression. Cell. 2008;135:561–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li YH, Woo SH, Choi DH, Cho EH. Succinate causes alpha-SMA production through GPR91 activation in hepatic stellate cells. Biochem Biophys Res Commun. 2015;463:853–8.

    Article  CAS  PubMed  Google Scholar 

  27. Liu XJ, Xie L, Du K, Liu C, Zhang NP, Gu CJ, et al. Succinate-GPR-91 receptor signalling is responsible for nonalcoholic steatohepatitis-associated fibrosis: Effects of DHA supplementation. Liver Int. 2020;40:830–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Macaulay IC, Tijssen MR, Thijssen-Timmer DC, Gusnanto A, Steward M, Burns P, et al. Comparative gene expression profiling of in vitro differentiated megakaryocytes and erythroblasts identifies novel activatory and inhibitory platelet membrane proteins. Blood. 2007;109:3260–9.

    Article  CAS  PubMed  Google Scholar 

  29. Hogberg C, Gidlof O, Tan C, Svensson S, Nilsson-Ohman J, Erlinge D, et al. Succinate independently stimulates full platelet activation via cAMP and phosphoinositide 3-kinase-beta signaling. J Thromb Haemost. 2011;9:361–72.

    Article  CAS  PubMed  Google Scholar 

  30. Trauelsen M, Hiron TK, Lin D, Petersen JE, Breton B, Husted AS, et al. Extracellular succinate hyperpolarizes M2 macrophages through SUCNR1/GPR91-mediated Gq signaling. Cell Rep. 2021;35:109246.

    Article  CAS  PubMed  Google Scholar 

  31. Aguiar CJ, Rocha-Franco JA, Sousa PA, Santos AK, Ladeira M, Rocha-Resende C, et al. Succinate causes pathological cardiomyocyte hypertrophy through GPR91 activation. Cell Commun Signal. 2014;12:78.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Xu J, Zheng Y, Zhao Y, Zhang Y, Li H, Zhang A, et al. Succinate/IL-1beta signaling axis promotes the inflammatory progression of endothelial and exacerbates atherosclerosis. Front Immunol. 2022;13:817572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Haffke M, Fehlmann D, Rummel G, Boivineau J, Duckely M, Gommermann N, et al. Structural basis of species-selective antagonist binding to the succinate receptor. Nature. 2019;574:581–5.

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Bhuniya D, Umrani D, Dave B, Salunke D, Kukreja G, Gundu J, et al. Discovery of a potent and selective small molecule hGPR91 antagonist. Bioorg Med Chem Lett. 2011;21:3596–602.

    Article  CAS  PubMed  Google Scholar 

  35. Matlac DM, Hadrava Vanova K, Bechmann N, Richter S, Folberth J, Ghayee HK, et al. Succinate mediates tumorigenic effects via succinate receptor 1: potential for new targeted treatment strategies in succinate dehydrogenase deficient paragangliomas. Front Endocrinol. 2021;12:589451.

    Article  Google Scholar 

  36. Sakai M, Sumiyoshi T, Aoyama T, Urayama K, Yoshimura R. GPR91 antagonist and TGF-beta inhibitor suppressed collagen production of high glucose and succinate induced HSC activation. Biochem Biophys Res Commun. 2020;530:362–6.

    Article  CAS  PubMed  Google Scholar 

  37. Moreno-Navarrete JM, Catalan V, Whyte L, Diaz-Arteaga A, Vazquez-Martinez R, Rotellar F, et al. The L-alpha-lysophosphatidylinositol/GPR55 system and its potential role in human obesity. Diabetes. 2012;61:281–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mackie K. Cannabinoid receptors: where they are and what they do. J Neuroendocrinol. 2008;20:10–4.

    Article  CAS  PubMed  Google Scholar 

  39. Gonzalez-Mariscal I, Krzysik-Walker SM, Doyle ME, Liu QR, Cimbro R, Santa-Cruz Calvo S, et al. Human CB1 receptor isoforms, present in hepatocytes and beta-cells, are involved in regulating metabolism. Sci Rep. 2016;6:33302.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu QR, Pan CH, Hishimoto A, Li CY, Xi ZX, Llorente-Berzal A, et al. Species differences in cannabinoid receptor 2 (CNR2 gene): identification of novel human and rodent CB2 isoforms, differential tissue expression and regulation by cannabinoid receptor ligands. Genes Brain Behav. 2009;8:519–30.

    Article  CAS  PubMed  Google Scholar 

  41. Staton PC, Hatcher JP, Walker DJ, Morrison AD, Shapland EM, Hughes JP, et al. The putative cannabinoid receptor GPR55 plays a role in mechanical hyperalgesia associated with inflammatory and neuropathic pain. Pain. 2008;139:225–36.

    Article  CAS  PubMed  Google Scholar 

  42. Perez-Gomez E, Andradas C, Flores JM, Quintanilla M, Paramio JM, Guzman M, et al. The orphan receptor GPR55 drives skin carcinogenesis and is upregulated in human squamous cell carcinomas. Oncogene. 2013;32:2534–42.

    Article  CAS  PubMed  Google Scholar 

  43. Hasenoehrl C, Taschler U, Storr M, Schicho R. The gastrointestinal tract - a central organ of cannabinoid signaling in health and disease. Neurogastroenterol Motil. 2016;28:1765–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fondevila MF, Fernandez U, Gonzalez-Rellan MJ, Da Silva Lima N, Buque X, Gonzalez-Rodriguez A, et al. The L-alpha-lysophosphatidylinositol/g protein-coupled receptor 55 system induces the development of nonalcoholic steatosis and steatohepatitis. Hepatology. 2021;73:606–24.

    Article  CAS  PubMed  Google Scholar 

  45. Kang S, Lee AY, Park SY, Liu KH, Im DS. O-1602 promotes hepatic steatosis through GPR55 and PI3 kinase/Akt/SREBP-1c signaling in mice. Int J Mol Sci. 2021;22:3091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Masquelier J, Alhouayek M, Terrasi R, Bottemanne P, Paquot A, Muccioli GG. Lysophosphatidylinositols in inflammation and macrophage activation: Altered levels and anti-inflammatory effects. Biochim Biophys Acta Mol Cell Biol Lipids. 2018;1863:1458–68.

    Article  CAS  PubMed  Google Scholar 

  47. Kurano M, Kobayashi T, Sakai E, Tsukamoto K, Yatomi Y. Lysophosphatidylinositol, especially albumin-bound form, induces inflammatory cytokines in macrophages. FASEB J. 2021;35:e21673.

    Article  CAS  PubMed  Google Scholar 

  48. Martinez-Aguilar LM, Ibarra-Sanchez A, Guerrero-Moran DJ, Macias-Silva M, Munoz-Bello JO, Padilla A, et al. Lysophosphatidylinositol promotes chemotaxis and cytokine synthesis in mast cells with differential participation of GPR55 and CB2 Receptors. Int J Mol Sci. 2023;24:6316.

  49. Lipina C, Walsh SK, Mitchell SE, Speakman JR, Wainwright CL, Hundal HS. GPR55 deficiency is associated with increased adiposity and impaired insulin signaling in peripheral metabolic tissues. FASEB J. 2019;33:1299–312.

    Article  CAS  PubMed  Google Scholar 

  50. Meadows A, Lee JH, Wu CS, Wei Q, Pradhan G, Yafi M, et al. Deletion of G-protein-coupled receptor 55 promotes obesity by reducing physical activity. Int J Obes (Lond). 2016;40:417–24.

    Article  CAS  PubMed  Google Scholar 

  51. Tuduri E, Lopez M, Dieguez C, Nadal A, Nogueiras R. GPR55 and the regulation of glucose homeostasis. Int J Biochem Cell Biol. 2017;88:204–7.

    Article  CAS  PubMed  Google Scholar 

  52. Ruz-Maldonado I, Pingitore A, Liu B, Atanes P, Huang GC, Baker D, et al. LH-21 and abnormal cannabidiol improve beta-cell function in isolated human and mouse islets through GPR55-dependent and -independent signalling. Diabetes Obes Metab. 2018;20:930–42.

    Article  CAS  PubMed  Google Scholar 

  53. Tuduri E, Imbernon M, Hernandez-Bautista RJ, Tojo M, Ferno J, Dieguez C, et al. GPR55: a new promising target for metabolism? J Mol Endocrinol. 2017;58:R191–R202.

    Article  CAS  PubMed  Google Scholar 

  54. Heynen-Genel S, Dahl R, Shi S, Milan L, Hariharan S, Sergienko E, et al. Screening for selective ligands for GPR55 - antagonists. Bethesda (MD): Probe Reports from the NIH Molecular Libraries Program; 2010.

    Google Scholar 

  55. Ruz-Maldonado I, Liu B, Atanes P, Pingitore A, Huang GC, Choudhary P, et al. The cannabinoid ligands SR141716A and AM251 enhance human and mouse islet function via GPR55-independent signalling. Cell Mol Life Sci. 2020;77:4709–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lee SJ, Im DS. GPR55 antagonist CID16020046 protects against atherosclerosis development in mice by inhibiting monocyte adhesion and Mac-1 expression. Int J Mol Sci. 2021;22:13084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang Y, Pan W, Wang Y, Yin Y. The GPR55 antagonist CID16020046 protects against ox-LDL-induced inflammation in human aortic endothelial cells (HAECs). Arch Biochem Biophys. 2020;681:108254.

    Article  CAS  PubMed  Google Scholar 

  58. Stancic A, Jandl K, Hasenohrl C, Reichmann F, Marsche G, Schuligoi R, et al. The GPR55 antagonist CID16020046 protects against intestinal inflammation. Neurogastroenterol Motil. 2015;27:1432–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Alonso M, Serrano A, Vida M, Crespillo A, Hernandez-Folgado L, Jagerovic N, et al. Anti-obesity efficacy of LH-21, a cannabinoid CB(1) receptor antagonist with poor brain penetration, in diet-induced obese rats. Br J Pharmacol. 2012;165:2274–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ryberg E, Larsson N, Sjogren S, Hjorth S, Hermansson NO, Leonova J, et al. The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol. 2007;152:1092–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kargl J, Brown AJ, Andersen L, Dorn G, Schicho R, Waldhoer M, et al. A selective antagonist reveals a potential role of G protein-coupled receptor 55 in platelet and endothelial cell function. J Pharmacol Exp Ther. 2013;346:54–66.

    Article  CAS  PubMed  Google Scholar 

  62. Zhao J, Zhao Y, Hu Y, Peng J. Targeting the GPR119/incretin axis: a promising new therapy for metabolic-associated fatty liver disease. Cell Mol Biol Lett. 2021;26:32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hassing HA, Engelstoft MS, Sichlau RM, Madsen AN, Rehfeld JF, Pedersen J, et al. Oral 2-oleyl glyceryl ether improves glucose tolerance in mice through the GPR119 receptor. Biofactors. 2016;42:665–73.

    Article  CAS  PubMed  Google Scholar 

  64. Cox HM, Tough IR, Woolston AM, Zhang L, Nguyen AD, Sainsbury A, et al. Peptide YY is critical for acylethanolamine receptor Gpr119-induced activation of gastrointestinal mucosal responses. Cell Metab. 2010;11:532–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009;58:1091–103.

    Article  CAS  PubMed  Google Scholar 

  66. Khound R, Taher J, Baker C, Adeli K, Su Q. GLP-1 elicits an intrinsic gut-liver metabolic signal to ameliorate diet-induced VLDL overproduction and insulin resistance. Arterioscler Thromb Vasc Biol. 2017;37:2252–9.

    Article  CAS  PubMed  Google Scholar 

  67. Chu ZL, Carroll C, Alfonso J, Gutierrez V, He H, Lucman A, et al. A role for intestinal endocrine cell-expressed G protein-coupled receptor 119 in glycemic control by enhancing glucagon-like peptide-1 and glucose-dependent insulinotropic peptide release. Endocrinology. 2008;149:2038–47.

    Article  CAS  PubMed  Google Scholar 

  68. Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132:2131–57.

    Article  CAS  PubMed  Google Scholar 

  69. Moran BM, Flatt PR, McKillop AM. G protein-coupled receptors: signalling and regulation by lipid agonists for improved glucose homoeostasis. Acta Diabetol. 2016;53:177–88.

    Article  CAS  PubMed  Google Scholar 

  70. Yang JW, Kim HS, Choi YW, Kim YM, Kang KW. Therapeutic application of GPR119 ligands in metabolic disorders. Diabetes Obes Metab. 2018;20:257–69.

    Article  CAS  PubMed  Google Scholar 

  71. Ning Y, O’Neill K, Lan H, Pang L, Shan LX, Hawes BE, et al. Endogenous and synthetic agonists of GPR119 differ in signalling pathways and their effects on insulin secretion in MIN6c4 insulinoma cells. Br J Pharmacol. 2008;155:1056–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Overton HA, Babbs AJ, Doel SM, Fyfe MC, Gardner LS, Griffin G, et al. Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab. 2006;3:167–75.

    Article  CAS  PubMed  Google Scholar 

  73. Lauffer LM, Iakoubov R, Brubaker PL. GPR119 is essential for oleoylethanolamide-induced glucagon-like peptide-1 secretion from the intestinal enteroendocrine L-cell. Diabetes. 2009;58:1058–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Drzazga A, Kristinsson H, Salaga M, Zatorski H, Koziolkiewicz M, Gendaszewska-Darmach E, et al. Lysophosphatidylcholine and its phosphorothioate analogues potentiate insulin secretion via GPR40 (FFAR1), GPR55 and GPR119 receptors in a different manner. Mol Cell Endocrinol. 2018;472:117–25.

    Article  CAS  PubMed  Google Scholar 

  75. Metz SA. Ether-linked lysophospholipids initiate insulin secretion. Lysophospholipids may mediate effects of phospholipase A2 activation on hormone release. Diabetes. 1986;35:808–17.

    Article  CAS  PubMed  Google Scholar 

  76. Hansen KB, Rosenkilde MM, Knop FK, Wellner N, Diep TA, Rehfeld JF, et al. 2-Oleoyl glycerol is a GPR119 agonist and signals GLP-1 release in humans. J Clin Endocrinol Metab. 2011;96:E1409–17.

    Article  CAS  PubMed  Google Scholar 

  77. Shah U, Kowalski TJ. GPR119 agonists for the potential treatment of type 2 diabetes and related metabolic disorders. Vitam Horm. 2010;84:415–48.

    Article  CAS  PubMed  Google Scholar 

  78. Meier JJ. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat Rev Endocrinol. 2012;8:728–42.

    Article  CAS  PubMed  Google Scholar 

  79. Ansarullah, Lu Y, Holstein M, DeRuyter B, Rabinovitch A, Guo Z. Stimulating beta-cell regeneration by combining a GPR119 agonist with a DPP-IV inhibitor. PLoS One. 2013;8:e53345.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gao J, Tian L, Weng G, Bhagroo NV, Sorenson RL, O’Brien TD, et al. Stimulating beta cell replication and improving islet graft function by GPR119 agonists. Transpl Int. 2011;24:1124–34.

    Article  CAS  PubMed  Google Scholar 

  81. Marty VN, Farokhnia M, Munier JJ, Mulpuri Y, Leggio L, Spigelman I. Long-acting glucagon-like peptide-1 receptor agonists suppress voluntary alcohol intake in male wistar rats. Front Neurosci. 2020;14:599646.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Panaro BL, Flock GB, Campbell JE, Beaudry JL, Cao X, Drucker DJ. beta-Cell inactivation of GPR119 unmasks incretin dependence of GPR119-mediated glucoregulation. Diabetes. 2017;66:1626–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bahirat UA, Shenoy RR, Goel RN, Nemmani KV. APD668, a G protein-coupled receptor 119 agonist improves fat tolerance and attenuates fatty liver in high-trans fat diet induced steatohepatitis model in C57BL/6 mice. Eur J Pharmacol. 2017;801:35–45.

    Article  CAS  PubMed  Google Scholar 

  84. Yoshida S, Tanaka H, Oshima H, Yamazaki T, Yonetoku Y, Ohishi T, et al. AS1907417, a novel GPR119 agonist, as an insulinotropic and beta-cell preservative agent for the treatment of type 2 diabetes. Biochem Biophys Res Commun. 2010;400:745–51.

    Article  CAS  PubMed  Google Scholar 

  85. Kang SU. GPR119 agonists: a promising approach for T2DM treatment? A SWOT analysis of GPR119. Drug Discov Today. 2013;18:1309–15.

    Article  CAS  PubMed  Google Scholar 

  86. Ghislain J, Poitout V. Targeting lipid GPCRs to treat type 2 diabetes mellitus––progress and challenges. Nat Rev Endocrinol. 2021;17:162–75.

    Article  CAS  PubMed  Google Scholar 

  87. Tokmakova A, Kim D, Goddard WA 3rd, Liggett SB. Biased beta-agonists favoring Gs over beta-Arrestin for individualized treatment of obstructive lung disease. J Pers Med. 2022;12:331.

    Article  PubMed  PubMed Central  Google Scholar 

  88. He J, Chu Y. Small-molecule GLP-1 secretagogs: challenges and recent advances. Drug Discov Today. 2020;S1359-6446:30308–1.

    Google Scholar 

  89. Shah U. GPR119 agonists: a promising new approach for the treatment of type 2 diabetes and related metabolic disorders. Curr Opin Drug Discov Devel. 2009;12:519–32.

    CAS  PubMed  Google Scholar 

  90. Cornall LM, Mathai ML, Hryciw DH, McAinch AJ. Is GPR119 agonism an appropriate treatment modality for the safe amelioration of metabolic diseases? Expert Opin Investig Drugs. 2013;22:487–98.

    Article  CAS  PubMed  Google Scholar 

  91. Finck BN, Kelly DP. Peroxisome proliferator-activated receptor alpha (PPARalpha) signaling in the gene regulatory control of energy metabolism in the normal and diseased heart. J Mol Cell Cardiol. 2002;34:1249–57.

    Article  PubMed  Google Scholar 

  92. Nunez DJ, Bush MA, Collins DA, McMullen SL, Gillmor D, Apseloff G, et al. Gut hormone pharmacology of a novel GPR119 agonist (GSK1292263), metformin, and sitagliptin in type 2 diabetes mellitus: results from two randomized studies. PLoS One. 2014;9:e92494.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  93. Maekawa Y, Furuie H, Kato M, Myobatake Y, Kamiyama E, Watanabe A, et al. Effect of DS-8500a, a novel g protein-coupled receptor 119 agonist, on the pharmacokinetics of rosuvastatin and atorvastatin in healthy subjects. Clin Drug Investig. 2019;39:967–78.

    Article  CAS  PubMed  Google Scholar 

  94. Inagaki N, Chou HS, Tsukiyama S, Washio T, Shiosakai K, Nakatsuka Y, et al. Glucose-lowering effects and safety of DS-8500a, a G protein-coupled receptor 119 agonist, in Japanese patients with type 2 diabetes: results of a randomized, double-blind, placebo-controlled, parallel-group, multicenter, phase II study. BMJ Open Diabetes Res Care. 2017;5:e000424.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Watada H, Shiramoto M, Irie S, Terauchi Y, Yamada Y, Shiosakai K, et al. G protein-coupled receptor 119 agonist DS-8500a effects on pancreatic beta-cells in Japanese type 2 diabetes mellitus patients. J Diabetes Investig. 2019;10:84–93.

    Article  CAS  PubMed  Google Scholar 

  96. Yamada Y, Terauchi Y, Watada H, Nakatsuka Y, Shiosakai K, Washio T, et al. Efficacy and safety of GPR119 agonist DS-8500a in Japanese patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, 12-week study. Adv Ther. 2018;35:367–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wanders D, Judd RL. Future of GPR109A agonists in the treatment of dyslipidaemia. Diabetes Obes Metab. 2011;13:685–91.

    Article  CAS  PubMed  Google Scholar 

  98. Wise A, Foord SM, Fraser NJ, Barnes AA, Elshourbagy N, Eilert M, et al. Molecular identification of high and low affinity receptors for nicotinic acid. J Biol Chem. 2003;278:9869–74.

    Article  CAS  PubMed  Google Scholar 

  99. Taggart AK, Kero J, Gan X, Cai TQ, Cheng K, Ippolito M, et al. (D)-beta-Hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G. J Biol Chem. 2005;280:26649–52.

    Article  CAS  PubMed  Google Scholar 

  100. Plaisance EP, Lukasova M, Offermanns S, Zhang Y, Cao G, Judd RL. Niacin stimulates adiponectin secretion through the GPR109A receptor. Am J Physiol Endocrinol Metab. 2009;296:E549–58.

    Article  CAS  PubMed  Google Scholar 

  101. Newman JC, Verdin E. Beta-hydroxybutyrate: A signaling metabolite. Annu Rev Nutr. 2017;37:51–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Grabner GF, Xie H, Schweiger M, Zechner R. Lipolysis: cellular mechanisms for lipid mobilization from fat stores. Nat Metab. 2021;3:1445–65.

    Article  CAS  PubMed  Google Scholar 

  103. Carlson LA, Oro L. The effect of nicotinic acid on the plasma free fatty acid; demonstration of a metabolic type of sympathicolysis. Acta Med Scand. 1962;172:641–5.

    Article  CAS  PubMed  Google Scholar 

  104. Soga T, Kamohara M, Takasaki J, Matsumoto S, Saito T, Ohishi T, et al. Molecular identification of nicotinic acid receptor. Biochem Biophys Res Commun. 2003;303:364–9.

    Article  CAS  PubMed  Google Scholar 

  105. Tunaru S, Kero J, Schaub A, Wufka C, Blaukat A, Pfeffer K, et al. PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect. Nat Med. 2003;9:352–5.

    Article  CAS  PubMed  Google Scholar 

  106. Li X, Millar JS, Brownell N, Briand F, Rader DJ. Modulation of HDL metabolism by the niacin receptor GPR109A in mouse hepatocytes. Biochem Pharmacol. 2010;80:1450–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ganji SH, Tavintharan S, Zhu D, Xing Y, Kamanna VS, Kashyap ML. Niacin noncompetitively inhibits DGAT2 but not DGAT1 activity in HepG2 cells. J Lipid Res. 2004;45:1835–45.

    Article  CAS  PubMed  Google Scholar 

  108. Lauring B, Taggart AK, Tata JR, Dunbar R, Caro L, Cheng K, et al. Niacin lipid efficacy is independent of both the niacin receptor GPR109A and free fatty acid suppression. Sci Transl Med. 2012;4:148ra15.

    Article  Google Scholar 

  109. Benyo Z, Gille A, Kero J, Csiky M, Suchankova MC, Nusing RM, et al. GPR109A (PUMA-G/HM74A) mediates nicotinic acid-induced flushing. J Clin Invest. 2005;115:3634–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lai E, Waters MG, Tata JR, Radziszewski W, Perevozskaya I, Zheng W, et al. Effects of a niacin receptor partial agonist, MK-0354, on plasma free fatty acids, lipids, and cutaneous flushing in humans. J Clin Lipidol. 2008;2:375–83.

    Article  PubMed  Google Scholar 

  111. Susens U, Hermans-Borgmeyer I, Urny J, Schaller HC. Characterisation and differential expression of two very closely related G-protein-coupled receptors, GPR139 and GPR142, in mouse tissue and during mouse development. Neuropharmacology. 2006;50:512–20.

    Article  PubMed  Google Scholar 

  112. Amisten S, Salehi A, Rorsman P, Jones PM, Persaud SJ. An atlas and functional analysis of G-protein coupled receptors in human islets of Langerhans. Pharmacol Ther. 2013;139:359–91.

    Article  CAS  PubMed  Google Scholar 

  113. Matsuo A, Matsumoto S, Nagano M, Masumoto KH, Takasaki J, Matsumoto M, et al. Molecular cloning and characterization of a novel Gq-coupled orphan receptor GPRg1 exclusively expressed in the central nervous system. Biochem Biophys Res Commun. 2005;331:363–9.

    Article  CAS  PubMed  Google Scholar 

  114. Toda N, Hao X, Ogawa Y, Oda K, Yu M, Fu Z, et al. Potent and orally bioavailable GPR142 agonists as novel insulin secretagogues for the treatment of type 2 diabetes. ACS Med Chem Lett. 2013;4:790–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Katsube Y, Mizugaki H, Takenaka M. Benign condition simulating malignancy in celiac arteriography. Yonago Acta Med. 1970;14:96–100.

    CAS  PubMed  Google Scholar 

  116. Lin HV, Wang J, Wang J, Li W, Wang X, Alston JT, et al. GPR142 prompts glucagon-like Peptide-1 release from islets to improve beta cell function. Mol Metab. 2018;11:205–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Rudenko O, Shang J, Munk A, Ekberg JP, Petersen N, Engelstoft MS, et al. The aromatic amino acid sensor GPR142 controls metabolism through balanced regulation of pancreatic and gut hormones. Mol Metab. 2019;19:49–64.

    Article  CAS  PubMed  Google Scholar 

  118. Wang J, Carrillo JJ, Lin HV. GPR142 agonists stimulate glucose-dependent insulin secretion via Gq-dependent signaling. PLoS One. 2016;11:e0154452.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Al-Amily IM, Duner P, Groop L, Salehi A. The functional impact of G protein-coupled receptor 142 (Gpr142) on pancreatic beta-cell in rodents. Pflug Arch. 2019;471:633–45.

    Article  CAS  Google Scholar 

  120. Lin HV, Efanov AM, Fang X, Beavers LS, Wang X, Wang J, et al. GPR142 controls tryptophan-induced insulin and incretin hormone secretion to improve glucose metabolism. PLoS One. 2016;11:e0157298.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Ueda Y, Iwakura H, Bando M, Doi A, Ariyasu H, Inaba H, et al. Differential role of GPR142 in tryptophan-mediated enhancement of insulin secretion in obese and lean mice. PLoS One. 2018;13:e0198762.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Liu LZ, Ma T, Zhou J, Long Hu Z, Jun Zhang X, Zhen Zhang H, et al. Discovery of LY3325656: A GPR142 agonist suitable for clinical testing in humans. Bioorg Med Chem Lett. 2020;30:126857.

    Article  CAS  PubMed  Google Scholar 

  123. Wilson JE, Kurukulasuriya R, Sinz C, Lombardo M, Bender K, Parker D, et al. Discovery and development of benzo-[1,2,4]-triazolo-[1,4]-oxazepine GPR142 agonists for the treatment of diabetes. Bioorg Med Chem Lett. 2016;26:2947–51.

    Article  CAS  PubMed  Google Scholar 

  124. Cartoni C, Yasumatsu K, Ohkuri T, Shigemura N, Yoshida R, Godinot N, et al. Taste preference for fatty acids is mediated by GPR40 and GPR120. J Neurosci. 2010;30:8376–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kotarsky K, Nilsson NE, Flodgren E, Owman C, Olde B. A human cell surface receptor activated by free fatty acids and thiazolidinedione drugs. Biochem Biophys Res Commun. 2003;301:406–10.

    Article  CAS  PubMed  Google Scholar 

  126. Defossa E, Wagner M. Recent developments in the discovery of FFA1 receptor agonists as a novel oral treatment for type 2 diabetes mellitus. Bioorg Med Chem Lett. 2014;24:2991–3000.

    Article  CAS  PubMed  Google Scholar 

  127. Itoh Y, Kawamata Y, Harada M, Kobayashi M, Fujii R, Fukusumi S, et al. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature. 2003;422:173–6.

    Article  ADS  CAS  PubMed  Google Scholar 

  128. Briscoe CP, Tadayyon M, Andrews JL, Benson WG, Chambers JK, Eilert MM, et al. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem. 2003;278:11303–11.

    Article  CAS  PubMed  Google Scholar 

  129. Steneberg P, Rubins N, Bartoov-Shifman R, Walker MD, Edlund H. The FFA receptor GPR40 links hyperinsulinemia, hepatic steatosis, and impaired glucose homeostasis in mouse. Cell Metab. 2005;1:245–58.

    Article  CAS  PubMed  Google Scholar 

  130. Kebede M, Alquier T, Latour MG, Semache M, Tremblay C, Poitout V. The fatty acid receptor GPR40 plays a role in insulin secretion in vivo after high-fat feeding. Diabetes. 2008;57:2432–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Parker HE, Habib AM, Rogers GJ, Gribble FM, Reimann F. Nutrient-dependent secretion of glucose-dependent insulinotropic polypeptide from primary murine K cells. Diabetologia. 2009;52:289–98.

    Article  CAS  PubMed  Google Scholar 

  132. Edfalk S, Steneberg P, Edlund H. Gpr40 is expressed in enteroendocrine cells and mediates free fatty acid stimulation of incretin secretion. Diabetes. 2008;57:2280–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Park J, Lee MY, Seo YS, Kang B, Lim SC, Kang KW. GPR40 agonist inhibits NLRP3 inflammasome activation via modulation of nuclear factor-kappaB and sarco/endoplasmic reticulum Ca2+-ATPase. Life Sci. 2021;287:120127.

    Article  CAS  PubMed  Google Scholar 

  134. Tsujihata Y, Ito R, Suzuki M, Harada A, Negoro N, Yasuma T, et al. TAK-875, an orally available G protein-coupled receptor 40/free fatty acid receptor 1 agonist, enhances glucose-dependent insulin secretion and improves both postprandial and fasting hyperglycemia in type 2 diabetic rats. J Pharmacol Exp Ther. 2011;339:228–37.

    Article  CAS  PubMed  Google Scholar 

  135. Yabuki C, Komatsu H, Tsujihata Y, Maeda R, Ito R, Matsuda-Nagasumi K, et al. A novel antidiabetic drug, fasiglifam/TAK-875, acts as an ago-allosteric modulator of FFAR1. PLoS One. 2013;8:e76280.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  136. Mach M, Bazydlo-Guzenda K, Buda P, Matloka M, Dzida R, Stelmach F, et al. Discovery and development of CPL207280 as new GPR40/FFA1 agonist. Eur J Med Chem. 2021;226:113810.

    Article  CAS  PubMed  Google Scholar 

  137. Milligan G, Alvarez-Curto E, Hudson BD, Prihandoko R, Tobin AB. FFA4/GPR120: Pharmacology and therapeutic opportunities. Trends Pharmacol Sci. 2017;38:809–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Nishizaki H, Matsuoka O, Kagawa T, Kobayashi A, Watanabe M, Moritoh Y. SCO-267, a GPR40 full agonist, stimulates islet and gut hormone secretion and improves glycemic control in humans. Diabetes. 2021;70:2364–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Li M, Meng X, Xu J, Huang X, Li H, Li G, et al. GPR40 agonist ameliorates liver X receptor-induced lipid accumulation in liver by activating AMPK pathway. Sci Rep. 2016;6:25237.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  140. Brown SP, Dransfield PJ, Vimolratana M, Jiao X, Zhu L, Pattaropong V, et al. Discovery of AM-1638: a potent and orally bioavailable GPR40/FFA1 full agonist. ACS Med Chem Lett. 2012;3:726–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Hauge M, Vestmar MA, Husted AS, Ekberg JP, Wright MJ, Di Salvo J, et al. GPR40 (FFAR1) - combined Gs and Gq signaling in vitro is associated with robust incretin secretagogue action ex vivo and in vivo. Mol Metab. 2015;4:3–14.

    Article  CAS  PubMed  Google Scholar 

  142. Wang Y, Liu JJ, Dransfield PJ, Zhu L, Wang Z, Du X, et al. Discovery and optimization of potent GPR40 full agonists containing tricyclic spirocycles. ACS Med Chem Lett. 2013;4:551–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Christiansen E, Hansen SV, Urban C, Hudson BD, Wargent ET, Grundmann M, et al. Discovery of TUG-770: A highly potent free fatty acid receptor 1 (FFA1/GPR40) agonist for treatment of type 2 diabetes. ACS Med Chem Lett. 2013;4:441–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Takano R, Yoshida M, Inoue M, Honda T, Nakashima R, Matsumoto K, et al. Discovery of DS-1558: a potent and orally bioavailable GPR40 agonist. ACS Med Chem Lett. 2015;6:266–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Bazydlo-Guzenda K, Buda P, Matloka M, Mach M, Stelmach F, Dzida R, et al. CPL207280, a novel g protein-coupled receptor 40/free fatty acid receptor 1-specific agonist, shows a favorable safety profile and exerts antidiabetic effects in type 2 diabetic animals. Mol Pharmacol. 2021;100:335–47.

    Article  CAS  PubMed  Google Scholar 

  146. Menon V, Lincoff AM, Nicholls SJ, Jasper S, Wolski K, McGuire DK, et al. Fasiglifam-induced liver injury in patients with type 2 diabetes: results of a randomized controlled cardiovascular outcomes safety trial. Diabetes Care. 2018;41:2603–9.

    Article  CAS  PubMed  Google Scholar 

  147. Shavadia JS, Sharma A, Gu X, Neaton J, DeLeve L, Holmes D, et al. Determination of fasiglifam-induced liver toxicity: Insights from the data monitoring committee of the fasiglifam clinical trials program. Clin Trials. 2019;16:253–62.

    Article  PubMed  Google Scholar 

  148. Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem. 2003;278:11312–9.

    Article  CAS  PubMed  Google Scholar 

  149. Nilsson NE, Kotarsky K, Owman C, Olde B. Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem Biophys Res Commun. 2003;303:1047–52.

    Article  CAS  PubMed  Google Scholar 

  150. Thangaraju M, Cresci GA, Liu K, Ananth S, Gnanaprakasam JP, Browning DD, et al. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res. 2009;69:2826–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Le Poul E, Loison C, Struyf S, Springael JY, Lannoy V, Decobecq ME, et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem. 2003;278:25481–9.

    Article  PubMed  Google Scholar 

  152. Macia L, Tan J, Vieira AT, Leach K, Stanley D, Luong S, et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun. 2015;6:6734.

    Article  ADS  CAS  PubMed  Google Scholar 

  153. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009;461:1282–6.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  154. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly YM, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341:569–73.

    Article  ADS  CAS  PubMed  Google Scholar 

  155. Ge H, Li X, Weiszmann J, Wang P, Baribault H, Chen JL, et al. Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology. 2008;149:4519–26.

    Article  CAS  PubMed  Google Scholar 

  156. Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun. 2013;4:1829.

    Article  ADS  PubMed  Google Scholar 

  157. McNelis JC, Lee YS, Mayoral R, van der Kant R, Johnson AM, Wollam J, et al. GPR43 potentiates beta-cell function in obesity. Diabetes. 2015;64:3203–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes. 2012;61:364–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Bjursell M, Admyre T, Goransson M, Marley AE, Smith DM, Oscarsson J, et al. Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet. Am J Physiol Endocrinol Metab. 2011;300:E211–20.

    Article  CAS  PubMed  Google Scholar 

  160. Salaga M, Bartoszek A, Binienda A, Krajewska JB, Fabisiak A, Mosinska P, et al. Activation of free fatty acid receptor 4 affects intestinal inflammation and improves colon permeability in mice. Nutrients. 2021;13:2716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Hudson BD, Christiansen E, Murdoch H, Jenkins L, Hansen AH, Madsen O, et al. Complex pharmacology of novel allosteric free fatty acid 3 receptor ligands. Mol Pharmacol. 2014;86:200–10.

    Article  PubMed  Google Scholar 

  162. Mikami D, Kobayashi M, Uwada J, Yazawa T, Kamiyama K, Nishimori K, et al. AR420626, a selective agonist of GPR41/FFA3, suppresses growth of hepatocellular carcinoma cells by inducing apoptosis via HDAC inhibition. Ther Adv Med Oncol. 2020;12:1758835920913432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Smith NJ, Ward RJ, Stoddart LA, Hudson BD, Kostenis E, Ulven T, et al. Extracellular loop 2 of the free fatty acid receptor 2 mediates allosterism of a phenylacetamide ago-allosteric modulator. Mol Pharmacol. 2011;80:163–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Bolognini D, Moss CE, Nilsson K, Petersson AU, Donnelly I, Sergeev E, et al. A novel Allosteric activator of free fatty acid 2 receptor displays unique gi-functional bias. J Biol Chem. 2016;291:18915–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Kang S, Huang J, Lee BK, Jung YS, Im E, Koh JM, et al. Omega-3 polyunsaturated fatty acids protect human hepatoma cells from developing steatosis through FFA4 (GPR120). Biochim Biophys Acta Mol Cell Biol Lipids. 2018;1863:105–16.

    Article  CAS  PubMed  Google Scholar 

  166. Nakamoto K, Tokuyama S. Docosahexaenoic acid attenuates the progression of nonalcoholic steatohepatitis by suppressing the adipocyte Inflammation via the G protein-coupled receptor 120/free fatty acid receptor 4 pathway. Pharmacology. 2022;107:330–8.

    Article  CAS  PubMed  Google Scholar 

  167. Chen X, Liu C, Ruan L. G-protein-coupled receptors 120 Agonist III improves hepatic inflammation and ER stress in steatohepatitis. Dig Dis Sci. 2021;66:1090–6.

    Article  CAS  PubMed  Google Scholar 

  168. Valenzuela R, Ortiz M, Hernandez-Rodas MC, Echeverria F, Videla LA. Targeting n-3 polyunsaturated fatty acids in non-alcoholic fatty liver disease. Curr Med Chem. 2020;27:5250–72.

    Article  CAS  PubMed  Google Scholar 

  169. Kelley NS. Treatment of nonalcoholic fatty liver disease with long-chain n-3 polyunsaturated fatty acids in humans. Metab Syndr Relat Disord. 2016;14:417–30.

    Article  CAS  PubMed  Google Scholar 

  170. Dionysopoulos G, Kalopitas G, Vadarlis A, Bakaloudi DR, Gkiourtzis N, Karanika E, et al. Can omega-3 fatty acids be beneficial in pediatric NAFLD? A systematic review and meta-analysis. Crit Rev Food Sci Nutr. 2023;63:8545–53.

    Article  CAS  PubMed  Google Scholar 

  171. Guo XF, Wang C, Yang T, Ma WJ, Zhai J, Zhao T, et al. The effects of fish oil plus vitamin D3 intervention on non-alcoholic fatty liver disease: a randomized controlled trial. Eur J Nutr. 2022;61:1931–42.

    Article  CAS  PubMed  Google Scholar 

  172. Bonnefond A, Lamri A, Leloire A, Vaillant E, Roussel R, Levy-Marchal C, et al. Contribution of the low-frequency, loss-of-function p.R270H mutation in FFAR4 (GPR120) to increased fasting plasma glucose levels. J Med Genet. 2015;52:595–8.

    Article  CAS  PubMed  Google Scholar 

  173. Ichimura A, Hirasawa A, Poulain-Godefroy O, Bonnefond A, Hara T, Yengo L, et al. Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature. 2012;483:350–4.

    Article  ADS  CAS  PubMed  Google Scholar 

  174. Satapati S, Qian Y, Wu MS, Petrov A, Dai G, Wang SP, et al. GPR120 suppresses adipose tissue lipolysis and synergizes with GPR40 in antidiabetic efficacy. J Lipid Res. 2017;58:1561–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Mao C, Xiao P, Tao XN, Qin J, He QT, Zhang C, et al. Unsaturated bond recognition leads to biased signal in a fatty acid receptor. Science. 2023;380:eadd6220.

    Article  CAS  PubMed  Google Scholar 

  176. Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan W, et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell. 2010;142:687–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Nehra D, Pan AH, Le HD, Fallon EM, Carlson SJ, Kalish BT, et al. Docosahexaenoic acid, G protein-coupled receptors, and melanoma: is G protein-coupled receptor 40 a potential therapeutic target? J Surg Res. 2014;188:451–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Rouquette M, Lepetre-Mouelhi S, Dufrancais O, Yang X, Mougin J, Pieters G, et al. Squalene-adenosine nanoparticles: ligands of adenosine receptors or adenosine prodrug? J Pharmacol Exp Ther. 2019;369:144–51.

    Article  CAS  PubMed  Google Scholar 

  179. Hudson BD, Shimpukade B, Mackenzie AE, Butcher AJ, Pediani JD, Christiansen E, et al. The pharmacology of TUG-891, a potent and selective agonist of the free fatty acid receptor 4 (FFA4/GPR120), demonstrates both potential opportunity and possible challenges to therapeutic agonism. Mol Pharmacol. 2013;84:710–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Kiepura A, Suski M, Stachyra K, Kus K, Czepiel K, Wisniewska A, et al. The influence of the FFAR4 agonist TUG-891 on liver steatosis in ApoE-knockout mice. Cardiovasc Drugs Ther. 2023; https://doi.org/10.1007/s10557-023-07430-7. Online ahead of print.

  181. Moniri NH. Free-fatty acid receptor-4 (GPR120): cellular and molecular function and its role in metabolic disorders. Biochem Pharmacol. 2016;110-111:1–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Lai LH, Wang RX, Jiang WP, Yang XJ, Song JP, Li XR, et al. Effects of docosahexaenoic acid on large-conductance Ca2+-activated K+ channels and voltage-dependent K+ channels in rat coronary artery smooth muscle cells. Acta Pharmacol Sin. 2009;30:314–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This manuscript is supported partially by the National Natural Science Foundation of China (NSFC #82370625, 82170624, 81871997, 81572356) and the National Key R&D Program of China (#2016YFE0107400) to J.W.

Author information

Authors and Affiliations

Authors

Contributions

Concept and literature review: JW, CJ, LLL. Manuscript preparation: CJ, HC, LX, YZ. Manuscript finalization: JW, LLL.

Corresponding authors

Correspondence to Li-li Liu or Jian Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, C., Chen, H., Xie, L. et al. GPCRs involved in metabolic diseases: pharmacotherapeutic development updates. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-023-01215-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-023-01215-2

Keywords

Search

Quick links