Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Phenome-wide association study and precision medicine of cardiovascular diseases in the post-COVID-19 era

Abstract

SARS-CoV-2 infection causes injuries of not only the lungs but also the heart and endothelial cells in vasculature of multiple organs, and induces systemic inflammation and immune over-reactions, which makes COVID-19 a disease phenome that simultaneously affects multiple systems. Cardiovascular diseases (CVD) are intrinsic risk and causative factors for severe COVID-19 comorbidities and death. The wide-spread infection and reinfection of SARS-CoV-2 variants and the long-COVID may become a new common threat to human health and propose unprecedented impact on the risk factors, pathophysiology, and pharmacology of many diseases including CVD for a long time. COVID-19 has highlighted the urgent demand for precision medicine which needs new knowledge network to innovate disease taxonomy for more precise diagnosis, therapy, and prevention of disease. A deeper understanding of CVD in the setting of COVID-19 phenome requires a paradigm shift from the current phenotypic study that focuses on the virus or individual symptoms to phenomics of COVID-19 that addresses the inter-connectedness of clinical phenotypes, i.e., clinical phenome. Here, we summarize the CVD manifestations in the full clinical spectrum of COVID-19, and the phenome-wide association study of CVD interrelated to COVID-19. We discuss the underlying biology for CVD in the COVID-19 phenome and the concept of precision medicine with new phenomic taxonomy that addresses the overall pathophysiological responses of the body to the SARS-CoV-2 infection. We also briefly discuss the unique taxonomy of disease as Zheng-hou patterns in traditional Chinese medicine, and their potential implications in precision medicine of CVD in the post-COVID-19 era.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The COVID-19 phenome.
Fig. 2: Cardiovascular manifestations and potential underlying mechanisms in the COVID-19 phenome.
Fig. 3: PheWAS and precision medicine of CVD in the COVID-19 phenome.

Similar content being viewed by others

References

  1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382:727–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang XL, Li ZM, Ye JT, Lu J, Ye LL, Zhang CX, et al. Pharmacological and cardiovascular perspectives on the treatment of COVID-19 with chloroquine derivatives. Acta Pharmacol Sin. 2020;41:1377–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gluckman TJ, Bhave NM, Allen LA, Chung EH, Spatz ES, Ammirati E, et al. 2022 ACC expert consensus decision pathway on cardiovascular sequelae of COVID-19 in adults: myocarditis and other myocardial involvement, post-acute sequelae of SARS-CoV-2 infection, and return to play: a report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2022;79:1717–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Welty FK, Rajai N, Amangurbanova M. Comprehensive review of cardiovascular complications of coronavirus disease 2019 and beneficial treatments. Cardiol Rev. 2022;30:145–57.

    Article  PubMed  Google Scholar 

  6. Ho HT, Peischard S, Strutz-Seebohm N, Klingel K, Seebohm G. Myocardial damage by SARS-CoV-2: emerging mechanisms and therapies. Viruses. 2021;13:1880–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Maiese A, Frati P, Del Duca F, Santoro P, Manetti AC, La Russa R, et al. Myocardial pathology in COVID-19-associated cardiac injury: a systematic review. Diagnostics. 2021;11:1647–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cooke JP, Connor JH, Jain A. Acute and chronic cardiovascular manifestations of COVID-19: role for endotheliopathy. Methodist Debakey Cardiovasc J. 2021;17:53–62.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Arevalos V, Ortega-Paz L, Rodriguez-Arias JJ, Calvo Lopez M, Castrillo-Golvano L, Salazar-Rodriguez A, et al. Acute and chronic effects of COVID-19 on the cardiovascular system. J Cardiovasc Dev Dis. 2021;8:128–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Crudo VL, Ahmed AI, Cowan EL, Shah DJ, Al-Mallah MH, Malahfji M. Acute and subclinical myocardial injury in COVID-19. Methodist Debakey Cardiovasc J. 2021;17:22–30.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jaiswal V, Sarfraz Z, Sarfraz A, Mukherjee D, Batra N, Hitawala G, et al. COVID-19 infection and myocarditis: a state-of-the-art systematic review. J Prim Care Community Health. 2021;12:21501327211056800.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chen YM, Zheng Y, Yu Y, Wang Y, Huang Q, Qian F, et al. Blood molecular markers associated with COVID-19 immunopathology and multi-organ damage. EMBO J. 2020;39:e105896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lawler NG, Gray N, Kimhofer T, Boughton B, Gay M, Yang R, et al. Systemic perturbations in amine and kynurenine metabolism associated with acute SARS-CoV-2 infection and inflammatory cytokine responses. J Proteome Res. 2021;20:2796–811.

    Article  CAS  PubMed  Google Scholar 

  14. Liu R, Pan J, Zhang C, Sun X. Cardiovascular complications of COVID-19 vaccines. Front Cardiovasc Med. 2022;9:840929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mohammadi A, Balan I, Yadav S, Matos WF, Kharawala A, Gaddam M, et al. Post-COVID-19 pulmonary fibrosis. Cureus. 2022;14:e22770.

    PubMed  PubMed Central  Google Scholar 

  16. Papadopoulou A, Musa H, Sivaganesan M, McCoy D, Deloukas P, Marouli E. COVID-19 susceptibility variants associate with blood clots, thrombophlebitis and circulatory diseases. PLoS One. 2021;16:e0256988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Parise RS, Ramesh S, Govindarajulu M, Ajoolabady A, Moore T, Dhanasekaran M. COVID-19-induced cardiovascular damage differs from other prevalent viruses. Cardiol Plus. 2021;6:231–45.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rajpal S, Kahwash R, Tong MS, Paschke K, Satoskar AA, Foreman B, et al. Fulminant myocarditis following SARS-CoV-2 infection: JACC patient care pathways. JACC Case Rep. 2022;4:567–75.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Regan JA, Abdulrahim JW, Bihlmeyer NA, Haynes C, Kwee LC, Patel MR, et al. Phenome-wide association study of severe COVID-19 genetic risk variants. J Am Heart Assoc. 2022;11:e024004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sakr Y, Giovini M, Leone M, Pizzilli G, Kortgen A, Bauer M, et al. Pulmonary embolism in patients with coronavirus disease-2019 (COVID-19) pneumonia: a narrative review. Ann Intensive Care. 2020;10:124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Siripanthong B, Asatryan B, Hanff TC, Chatha SR, Khanji MY, Ricci F, et al. The pathogenesis and long-term consequences of COVID-19 cardiac injury. JACC Basic Transl Sci. 2022;7:294–308.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhou D, Gamazon ER. Integrative transcriptomic, evolutionary, and causal inference framework for region-level analysis: Application to COVID-19. NPJ Genom Med. 2022;7:24.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhang YP, Zhang YY, Duan DD. From genome-wide association study to phenome-wide association study: new paradigms in obesity research. Prog Mol Biol Transl Sci. 2016;140:185–231.

    Article  CAS  PubMed  Google Scholar 

  24. Verma A, Tsao NL, Thomann L, Ho YL, Iyengar S, Luoh SW, et al. A Phenome-Wide Association Study of genes associated with COVID-19 severity reveals shared genetics with complex diseases in the Million Veteran Program. PLoS Genet. 2022;18:e1010113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tuta-Quintero E, Martinez-Ayala C, Mantilla-Beltran G, Rueda-Rodriguez A, Pimentel J. Multisystem inflammatory syndrome and COVID-19: a scoping review. Bol Med Hosp Infant Mex. 2022;79:69–82.

    PubMed  Google Scholar 

  26. Duan DD, Han Y, Li L, Zhao J, Wang Z. Pharmacophenomics: a new paradigm for pharmacology, toxicology, and personalized medicine. Chin J Pharmacol Toxicol. 2014;28:1–9.

    Google Scholar 

  27. Xie Y, Xu E, Bowe B, Al-Aly Z. Long-term cardiovascular outcomes of COVID-19. Nat Med. 2022;28:583–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nicholson JK. Molecular phenomic approaches to deconvolving the systemic effects of SARS-CoV-2 infection and post-acute COVID-19 syndrome. Phenomics. 2021;1:143–50.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Abdelsayed N, McKinney B, Carter M. SARS-CoV-2 complicated by a large hemorrhagic pericardial effusion. Cureus. 2022;14:e22282.

    PubMed  PubMed Central  Google Scholar 

  30. Fernandes Q, Inchakalody VP, Merhi M, Mestiri S, Taib N, Moustafa Abo El-Ella D, et al. Emerging COVID-19 variants and their impact on SARS-CoV-2 diagnosis, therapeutics and vaccines. Ann Med. 2022;54:524–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ahmad MS, Shaik RA, Ahmad RK, Yusuf M, Khan M, Almutairi AB, et al. “LONG COVID”: an insight. Eur Rev Med Pharm Sci. 2021;25:5561–77.

    CAS  Google Scholar 

  32. Shiravi AA, Ardekani A, Sheikhbahaei E, Heshmat-Ghahdarijani K. Cardiovascular complications of SARS-CoV-2 vaccines: an overview. Cardiol Ther. 2022;11:13–21.

    Article  PubMed  Google Scholar 

  33. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323:1061–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xiong TY, Redwood S, Prendergast B, Chen M. Coronaviruses and the cardiovascular system: acute and long-term implications. Eur Heart J. 2020;41:1798–800.

    Article  CAS  PubMed  Google Scholar 

  35. Parohan M, Yaghoubi S, Seraji A. Cardiac injury is associated with severe outcome and death in patients with Coronavirus disease 2019 (COVID-19) infection: a systematic review and meta-analysis of observational studies. Eur Heart J Acute Cardiovasc Care. 2020;9:665–77.

    Article  PubMed  Google Scholar 

  36. Lala A, Johnson KW, Januzzi JL, Russak AJ, Paranjpe I, Richter F, et al. Prevalence and impact of myocardial injury in patients hospitalized With COVID-19 infection. J Am Coll Cardiol. 2020;76:533–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Alvarez-Garcia J, Lee S, Gupta A, Cagliostro M, Joshi AA, Rivas-Lasarte M, et al. Prognostic impact of prior heart failure in patients hospitalized with COVID-19. J Am Coll Cardiol. 2020;76:2334–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Giustino G, Pinney SP, Lala A, Reddy VY, Johnston-Cox HA, Mechanick JI, et al. Coronavirus and cardiovascular disease, myocardial injury, and arrhythmia: JACC focus seminar. J Am Coll Cardiol. 2020;76:2011–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yu Y, Xu D, Fu S, Zhang J, Yang X, Xu L, et al. Patients with COVID-19 in 19 ICUs in Wuhan, China: a cross-sectional study. Crit Care. 2020;24:219.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323:1239–42.

    Article  CAS  PubMed  Google Scholar 

  42. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382:1708–20.

    Article  CAS  PubMed  Google Scholar 

  43. Guzik TJ, Mohiddin SA, Dimarco A, Patel V, Savvatis K, Marelli-Berg FM, et al. COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Cardiovasc Res. 2020;116:1666–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Saggese CE. COVID-19 and stroke: an emerging association. Cerebrovasc Dis. 2021;50:363.

    Article  CAS  PubMed  Google Scholar 

  45. Saggese CE, Del Bianco C, Di Ruzza MR, Magarelli M, Gandini R, Plocco M. COVID-19 and stroke: casual or causal role? Cerebrovasc Dis. 2020;49:341–4.

    Article  CAS  PubMed  Google Scholar 

  46. Kario K, Morisawa Y, Sukonthasarn A, Turana Y, Chia YC, Park S, et al. COVID-19 and hypertension-evidence and practical management: guidance from the HOPE Asia Network. J Clin Hypertens. 2020;22:1109–19.

    Article  CAS  Google Scholar 

  47. Williamson EJ, Walker AJ, Bhaskaran K, Bacon S, Bates C, Morton CE, et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature. 2020;584:430–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Myers LC, Parodi SM, Escobar GJ, Liu VX. Characteristics of hospitalized adults with COVID-19 in an integrated health care system in California. JAMA. 2020;323:2195–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Denny JC, Bastarache L, Roden DM. Phenome-wide association studies as a tool to advance precision medicine. Annu Rev Genom Hum Genet. 2016;17:353–73.

    Article  CAS  Google Scholar 

  50. Salvatore M, Gu T, Mack JA, Prabhu Sankar S, Patil S, Valley TS, et al. A Phenome-Wide Association Study (PheWAS) of COVID-19 outcomes by race using the electronic health records data in Michigan medicine. J Clin Med. 2021;10:1351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Verma A, Tsao NL, Thomann LO, Ho YL, Iyengar SK, Luoh SW, et al. A Phenome-Wide Association Study of genes associated with COVID-19 severity reveals shared genetics with complex diseases in the Million Veteran Program. PLoS Genet. 2022;18:e1010113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Song RJ, Ho YL, Schubert P, Park Y, Posner D, Lord EM, et al. Phenome-wide association of 1809 phenotypes and COVID-19 disease progression in the Veterans Health Administration Million Veteran Program. PLoS One. 2021;16:e0251651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. George G, Gan S, Huang Y, Appleby P, Nar AS, Venkatesan R, et al. PheGWAS: a new dimension to visualize GWAS across multiple phenotypes. Bioinformatics. 2020;36:2500–5.

    Article  CAS  PubMed  Google Scholar 

  54. Pendergrass SA, Brown-Gentry K, Dudek S, Frase A, Torstenson ES, Goodloe R, et al. Phenome-wide association study (PheWAS) for detection of pleiotropy within the Population Architecture using Genomics and Epidemiology (PAGE) network. PLoS Genet. 2013;9:e1003087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fayol A, Livrozet M, Boutouyrie P, Khettab H, Betton M, Tea V, et al. Cardiac performance in patients hospitalized with COVID-19: a 6 month follow-up study. ESC Heart Fail. 2021;8:2232–9.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Manolis AS, Manolis AA, Manolis TA, Apostolopoulos EJ, Papatheou D, Melita H. COVID-19 infection and cardiac arrhythmias. Trends Cardiovasc Med. 2020;30:451–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tajbakhsh A, Gheibi Hayat SM, Taghizadeh H, Akbari A, Inabadi M, Savardashtaki A, et al. COVID-19 and cardiac injury: clinical manifestations, biomarkers, mechanisms, diagnosis, treatment, and follow up. Expert Rev Anti-Infective Ther. 2021;19:345–57.

    Article  CAS  Google Scholar 

  58. Sahranavard M, Akhavan Rezayat A, Zamiri Bidary M, Omranzadeh A, Rohani F, Hamidi Farahani R, et al. Cardiac complications in COVID-19: a systematic review and meta-analysis. Arch Iran Med. 2021;24:152–63.

    Article  PubMed  Google Scholar 

  59. Haussner W, DeRosa AP, Haussner D, Tran J, Torres-Lavoro J, Kamler J, et al. COVID-19 associated myocarditis: a systematic review. Am J Emerg Med. 2022;51:150–5.

    Article  PubMed  Google Scholar 

  60. Yang Z, MacDonald-Dunlop E, Chen J, Zhai R, Li T, Richmond A, et al. Genetic landscape of the ACE2 coronavirus receptor. Circulation. 2022;145:1398–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Eftekharzadeh P, Patel A, Sokolova E, Rodas A, Ahmed S. Takotsubo cardiomyopathy: a COVID-19 complication. Cureus. 2022;14:e22803.

    PubMed  PubMed Central  Google Scholar 

  62. Lee K, Rahimi O, Gupta N, Ahsan C. Complete AV block in vaccinated COVID-19 patient. Case Rep Cardiol. 2022;2022:9371818.

    PubMed  PubMed Central  Google Scholar 

  63. Singh T, Khan H, Gamble DT, Scally C, Newby DE, Dawson D. Takotsubo syndrome: pathophysiology, emerging concepts, and clinical implications. Circulation. 2022;145:1002–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gomez JMD, Nair G, Nanavaty P, Rao A, Marinescu K, Suboc T. COVID-19-associated takotsubo cardiomyopathy. BMJ Case Rep. 2020;13:e236811.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Tamis-Holland JE, Jneid H, Reynolds HR, Agewall S, Brilakis ES, Brown TM, et al. Contemporary diagnosis and management of patients with myocardial infarction in the absence of obstructive coronary artery disease: a scientific statement from the American Heart Association. Circulation. 2019;139:e891–e908.

    Article  PubMed  Google Scholar 

  66. Chammas J, Delaney D, Chabaytah N, Abdulkarim S, Schwertani A. COVID-19 and the cardiovascular system: insights into effects and treatments. Can J Physiol Pharmacol. 2021;99:1119–27.

    Article  CAS  PubMed  Google Scholar 

  67. Huang C, Huang L, Wang Y, Li X, Ren L, Gu X, et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2021;397:220–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Carfi A, Bernabei R, Landi F, Gemelli Against C-P-ACSG. Persistent symptoms in patients after acute COVID-19. JAMA. 2020;324:603–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ayoubkhani D, Khunti K, Nafilyan V, Maddox T, Humberstone B, Diamond I, et al. Post-covid syndrome in individuals admitted to hospital with covid-19: retrospective cohort study. BMJ. 2021;372:n693.

    Article  PubMed  Google Scholar 

  70. Inciardi RM, Lupi L, Zaccone G, Italia L, Raffo M, Tomasoni D, et al. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5:819–24.

    Article  PubMed  Google Scholar 

  71. Li M, Dong Y, Wang H, Guo W, Zhou H, Zhang Z, et al. Cardiovascular disease potentially contributes to the progression and poor prognosis of COVID-19. Nutr Metab Cardiovasc Dis. 2020;30:1061–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Khalid M, Awan S, Jatoi NN, Jatoi HN, Yasmin F, Ochani RK, et al. Cardiac manifestations of the coronavirus disease-19: a review of pathogenesis, clinical manifestations, diagnosis, and treatment. Pan Afr Med J. 2021;39:173.

    PubMed  PubMed Central  Google Scholar 

  73. Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581:215–20.

    Article  CAS  PubMed  Google Scholar 

  74. Jiang RD, Liu MQ, Chen Y, Shan C, Zhou YW, Shen XR, et al. Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-converting enzyme 2. Cell. 2020;182:50–8.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271–80.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell. 2020;181:894–904.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wenzel UO, Kintscher U. ACE2 and SARS-CoV-2: tissue or plasma, good or bad? Am J Hypertens. 2021;34:274–7.

    Article  CAS  PubMed  Google Scholar 

  78. Wicik Z, Eyileten C, Jakubik D, Simoes SN, Martins DC Jr, Pavao R, et al. ACE2 interaction networks in COVID-19: a physiological framework for prediction of outcome in patients with cardiovascular risk factors. J Clin Med. 2020;9:3743–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wehbe Z, Hammoud S, Soudani N, Zaraket H, El-Yazbi A, Eid AH. Molecular insights Into SARS COV-2 interaction with cardiovascular disease: role of RAAS and MAPK signaling. Front Pharmacol. 2020;11:836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Turner AJ, Hiscox JA, Hooper NM. ACE2: from vasopeptidase to SARS virus receptor. Trends Pharmacol Sci. 2004;25:291–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol. 2022;23:3–20.

    Article  CAS  PubMed  Google Scholar 

  82. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203:631–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Turner AJ, Nalivaeva NN. Angiotensin-converting enzyme 2 (ACE2): Two decades of revelations and re-evaluation. Peptides. 2022;151:170766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Turner AJ, Hooper NM. The angiotensin-converting enzyme gene family: genomics and pharmacology. Trends Pharmacol Sci. 2002;23:177–83.

    Article  CAS  PubMed  Google Scholar 

  85. Pang XC, Zhang HX, Zhang Z, Rinkiko S, Cui YM, Zhu YZ. The two-way switch role of ACE2 in the treatment of novel coronavirus pneumonia and underlying comorbidities. Molecules. 2020;26:142–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gheblawi M, Wang K, Viveiros A, Nguyen Q, Zhong JC, Turner AJ, et al. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2. Circ Res. 2020;126:1456–74.

    Article  CAS  PubMed  Google Scholar 

  87. Wallentin L, Lindback J, Eriksson N, Hijazi Z, Eikelboom JW, Ezekowitz MD, et al. Angiotensin-converting enzyme 2 (ACE2) levels in relation to risk factors for COVID-19 in two large cohorts of patients with atrial fibrillation. Eur Heart J. 2020;41:4037–46.

    Article  CAS  PubMed  Google Scholar 

  88. Liu Y, Yang Y, Zhang C, Huang F, Wang F, Yuan J, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci. 2020;63:364–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kornilov SA, Lucas I, Jade K, Dai CL, Lovejoy JC, Magis AT. Plasma levels of soluble ACE2are associated with sex, metabolic syndrome, and its biomarkers in a large cohort, pointing to a possible mechanism for increased severity in COVID-19. Crit Care. 2020;24:452.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Sward P, Edsfeldt A, Reepalu A, Jehpsson L, Rosengren BE, Karlsson MK. Age and sex differences in soluble ACE2 may give insights for COVID-19. Crit Care. 2020;24:221.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Denny JC, Collins FS. Precision medicine in 2030-seven ways to transform healthcare. Cell. 2021;184:1415–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nikpay M, Mohammadzadeh S. Phenome-wide screening for traits causally associated with the risk of coronary artery disease. J Hum Genet. 2020;65:371–80.

    Article  PubMed  Google Scholar 

  93. Han Y, Li L, Zhang Y, Yuan H, Ye L, Zhao J, et al. Phenomics of vascular disease: the systematic approach to the combination therapy. Curr Vasc Pharmacol. 2015;13:433–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Denny JC, Ritchie MD, Basford MA, Pulley JM, Bastarache L, Brown-Gentry K, et al. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. Bioinformatics. 2010;26:1205–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Diogo D, Tian C, Franklin CS, Alanne-Kinnunen M, March M, Spencer CCA, et al. Phenome-wide association studies across large population cohorts support drug target validation. Nat Commun. 2018;9:4285.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Pendergrass SA, Ritchie MD. Phenome-wide association studies: leveraging comprehensive phenotypic and genotypic data for discovery. Curr Genet Med Rep. 2015;3:92–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Roden DM. Phenome-wide association studies: a new method for functional genomics in humans. J Physiol. 2017;595:4109–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Barnado A, Carroll RJ, Casey C, Wheless L, Denny JC, Crofford LJ. Phenome-wide association studies uncover a novel association of increased atrial fibrillation in male patients with systemic Lupus Erythematosus. Arthritis Care Res. 2018;70:1630–6.

    Article  CAS  Google Scholar 

  99. Pathak GA, Singh K, Miller-Fleming TW, Wendt FR, Ehsan N, Hou K, et al. Integrative genomic analyses identify susceptibility genes underlying COVID-19 hospitalization. Nat Commun. 2021;12:4569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Li J, Wang X, Chen J, Zhang H, Deng A. Association of renin-angiotensin system inhibitors with severity or risk of death in patients with hypertension hospitalized for coronavirus disease 2019 (COVID-19) infection in Wuhan, China. JAMA Cardiol. 2020;5:825–30.

    Article  PubMed  Google Scholar 

  101. Zhang P, Zhu L, Cai J, Lei F, Qin JJ, Wang Y, et al. Response by Zhang et al. to Letter Regarding Article, “Association of inpatient use of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers with mortality among patients with hypertension hospitalized with COVID-19”. Circ Res. 2020;126:e142–e3.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhang P, Zhu L, Cai J, Lei F, Qin JJ, Xie J, et al. Association of inpatient use of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers with mortality among patients with hypertension hospitalized with COVID-19. Circ Res. 2020;126:1671–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Watkins J. Preventing a covid-19 pandemic. BMJ. 2020;368:m810.

    Article  PubMed  Google Scholar 

  104. Kuster GM, Pfister O, Burkard T, Zhou Q, Twerenbold R, Haaf P, et al. SARS-CoV2: should inhibitors of the renin-angiotensin system be withdrawn in patients with COVID-19? Eur Heart J. 2020;41:1801–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. National Research Council (US) Committee on A Framework for Developing a New Taxonomy of Disease In: Toward precision medicine: building a knowledge network for biomedical research and a new taxonomy of disease. (National Academies Press (US), Washington, D.C., 2011).

  106. Chute CG, Celik C. Overview of ICD-11 architecture and structure. BMC Med Inform Decis Mak. 2022;21:378.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Drosler SE, Weber S, Chute CG. ICD-11 extension codes support detailed clinical abstraction and comprehensive classification. BMC Med Inform Decis Mak. 2021;21:278.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Li JG, Xu H. Chinese medicine in fighting against Covid-19: role and inspiration. Chin J Integr Med. 2021;27:3–6.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Chen X, Yin YH, Zhang MY, Liu JY, Li R, Qu YQ. Investigating the mechanism of ShuFeng JieDu capsule for the treatment of novel Coronavirus pneumonia (COVID-19) based on network pharmacology. Int J Med Sci. 2020;17:2511–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Jin YH, Zhan QY, Peng ZY, Ren XQ, Yin XT, Cai L, et al. Chemoprophylaxis, diagnosis, treatments, and discharge management of COVID-19: An evidence-based clinical practice guideline (updated version). Mil Med Res. 2020;7:41.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Duan DD, Wang Z, Zhang BL, Wang YY. Fangjiomics: revealing adaptive omics pharmacological mechanisms of the myriad combination therapies to achieve personalized medicine. Acta Pharmacol Sin. 2015;36:651–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Duan DD, Wang Z, Wang YY. New omic and network paradigms for deep understanding of therapeutic mechanisms for Fangji of traditional Chinese medicine. Acta Pharmacol Sin. 2018;39:903–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. He DD, Zhang XK, Zhu XY, Huang FF, Wang Z, Tu JC. Network pharmacology and RNA-sequencing reveal the molecular mechanism of Xuebijing injection on COVID-19-induced cardiac dysfunction. Comput Biol Med. 2021;131:104293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yu YN, Liu J, Zhang L, Wang Z, Duan DD, Wang YY. Clinical Zheng-hou pharmacology: the missing link between pharmacogenomics and personalized medicine? Curr Vasc Pharmacol. 2015;13:423–32.

    Article  CAS  PubMed  Google Scholar 

  115. Curran J. The Yellow Emperor’s classic of internal medicine. BMJ. 2008;336:777.

    Article  PubMed Central  Google Scholar 

  116. Luo H, Tang QL, Shang YX, Liang SB, Yang M, Robinson N, et al. Can Chinese medicine be used for prevention of corona virus disease 2019 (COVID-19)? A review of historical classics, research evidence and current prevention programs. Chin J Integr Med. 2020;26:243–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Qi F, Tang W. Traditional Chinese medicine for treatment of novel infectious diseases: current status and dilemma. Biosci Trends. 2021;15:201–4.

    Article  CAS  PubMed  Google Scholar 

  118. Han Y, Geng H, Feng W, Tang X, Ou A, Lao Y, et al. A follow-up study of 69 discharged SARS patients. J Tradit Chin Med. 2003;23:214–7.

    PubMed  Google Scholar 

  119. Tong X, Li A, Zhang Z, Duan J, Chen X, Hua C, et al. TCM treatment of infectious atypical pneumonia—a report of 16 cases. J Tradit Chin Med. 2004;24:266–9.

    PubMed  Google Scholar 

  120. Zhang MM, Liu XM, He L. Effect of integrated traditional Chinese and Western medicine on SARS: a review of clinical evidence. World J Gastroenterol. 2004;10:3500–5.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Liu X, Zhang M, He L, Li YP, Kang YK. Chinese herbs combined with Western medicine for severe acute respiratory syndrome (SARS). Cochrane Database Syst Rev. 2006;10:CD004882.

    Google Scholar 

  122. Chen Y, Guo JJ, Healy DP, Zhan S. Effect of integrated traditional Chinese medicine and western medicine on the treatment of severe acute respiratory syndrome: a meta-analysis. Pharm Pract (Granada). 2007;5:1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lau JT, Leung PC, Wong EL, Fong C, Cheng KF, Zhang SC, et al. The use of an herbal formula by hospital care workers during the severe acute respiratory syndrome epidemic in Hong Kong to prevent severe acute respiratory syndrome transmission, relieve influenza-related symptoms, and improve quality of life: a prospective cohort study. J Alter Complement Med. 2005;11:49–55.

    Article  Google Scholar 

  124. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395:565–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Han P, Li L, Liu S, Wang Q, Zhang D, Xu Z, et al. Receptor binding and complex structures of human ACE2 to spike RBD from omicron and delta SARS-CoV-2. Cell. 2022;185:630–40.e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. Addendum: a pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;588:E6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Song P, Zhao L, Li X, Su J, Jiang Z, Song B, et al. Interpretation of the Traditional Chinese Medicine portion of the diagnosis and treatment protocol for corona virus disease 2019 (Trial Version 7). J Tradit Chin Med. 2020;40:497–508.

    PubMed  Google Scholar 

  128. Li Q, Wang H, Li X, Zheng Y, Wei Y, Zhang P, et al. The role played by traditional Chinese medicine in preventing and treating COVID-19 in China. Front Med. 2020;14:681–8.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Chen G, Su W, Yang J, Luo D, Xia P, Jia W, et al. Chinese herbal medicine reduces mortality in patients with severe and critical Coronavirus disease 2019: a retrospective cohort study. Front Med. 2020;14:752–9.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Zhuang J, Dai X, Wu Q, Cai H, Fu X, Zhang W, et al. A meta-analysis for Lianhua Qingwen on the treatment of Coronavirus disease 2019 (COVID-19). Complement Ther Med. 2021;60:102754.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Zhao Z, Li Y, Zhou L, Zhou X, Xie B, Zhang W, et al. Prevention and treatment of COVID-19 using traditional Chinese medicine: a review. Phytomedicine. 2021;85:153308.

    Article  CAS  PubMed  Google Scholar 

  132. Chu L, Huang F, Zhang M, Huang B, Wang Y. Current status of traditional Chinese medicine for the treatment of COVID-19 in China. Chin Med. 2021;16:63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Buabeid M, Ijaz M, Shamim S, Huang X, Murtaza G. Therapeutic uses of traditional chinese medicines against COVID-19. Infect Drug Resist. 2021;14:5017–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. An X, Zhang Y, Duan L, Jin, Zhao S, Zhou R, et al. The direct evidence and mechanism of traditional Chinese medicine treatment of COVID-19. Biomed Pharmacother. 2021;137:111267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Tian J, Yan S, Wang H, Zhang Y, Zheng Y, Wu H, et al. Hanshiyi Formula, a medicine for Sars-CoV2 infection in China, reduced the proportion of mild and moderate COVID-19 patients turning to severe status: a cohort study. Pharmacol Res. 2020;161:105127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ai Z, Zhou S, Li W, Wang M, Wang L, Hu G, et al. “Fei Yan No. 1” as a combined treatment for COVID-19: an efficacy and potential mechanistic study. Front Pharmacol. 2020;11:581277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhang D, Zhang B, Lv JT, Sa RN, Zhang XM, Lin ZJ. The clinical benefits of Chinese patent medicines against COVID-19 based on current evidence. Pharmacol Res. 2020;157:104882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhou W, Chen Z, Sun X, Zhong N, Liu Z. Application of traditional chinese medicine and systems pharmacology in drug prevention and treatment against COVID-19. Am J Chin Med. 2021;49:1045–61.

    Article  CAS  PubMed  Google Scholar 

  139. Zhou LP, Wang J, Xie RH, Pakhale S, Krewski D, Cameron DW, et al. The effects of traditional Chinese medicine as an auxiliary treatment for COVID-19: a systematic review and meta-analysis. J Alter Complement Med. 2021;27:225–37.

    Article  CAS  Google Scholar 

  140. Zheng Y, Jin, Lin J, Zhang Y, Tian J, Lian F, et al. Understanding COVID-19 in Wuhan from the perspective of cold-dampness: clinical evidences and mechanisms. Front Med. 2021;8:617659.

    Article  Google Scholar 

  141. Zhao ZH, Zhou Y, Li WH, Huang QS, Tang ZH, Li H. Analysis of traditional Chinese medicine diagnosis and treatment strategies for COVID-19 based on “The Diagnosis and Treatment Program for Coronavirus Disease-2019” from Chinese authority. Am J Chin Med. 2020;48:1035–49.

    Article  CAS  PubMed  Google Scholar 

  142. Huang K, Zhang P, Zhang Z, Youn JY, Wang C, Zhang H, et al. Traditional Chinese Medicine (TCM) in the treatment of COVID-19 and other viral infections: efficacies and mechanisms. Pharmacol Ther. 2021;225:107843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Chen X, Wu Y, Chen C, Gu Y, Zhu C, Wang S, et al. Identifying potential anti-COVID-19 pharmacological components of traditional Chinese medicine Lianhuaqingwen capsule based on human exposure and ACE2 biochromatography screening. Acta Pharm Sin B. 2021;11:222–36.

    Article  CAS  PubMed  Google Scholar 

  144. Holmes E, Wist J, Masuda R, Lodge S, Nitschke P, Kimhofer T, et al. Incomplete systemic recovery and metabolic phenoreversion in post-acute-phase nonhospitalized COVID-19 patients: implications for assessment of post-acute COVID-19 syndrome. J Proteome Res. 2021;20:3315–29.

    Article  CAS  PubMed  Google Scholar 

  145. Filippetti L, Pace N, Louis JS, Mandry D, Goehringer F, Rocher MS, et al. Long-lasting myocardial and skeletal muscle damage evidenced by serial CMR during the first year in COVID-19 patients from the first wave. Front Cardiovasc Med. 2022;9:831580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Szarpak L, Pruc M, Filipiak KJ, Popieluch J, Bielski A, Jaguszewski MJ, et al. Myocarditis: a complication of COVID-19 and long-COVID-19 syndrome as a serious threat in modern cardiology. Cardiol J. 2022;29:178–9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from the Science and Technology strategic cooperation Programs of Luzhou Municipal People’s Government and Southwest Medical University (NO. 2017LZXNYD-P01 and 2019 LZXNYD-P01DUAN to Dr. Duan).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed substantially to all aspects of the article.

Corresponding authors

Correspondence to Lingyu Linda Ye or Dayue Darrel Duan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Q., Du, X., Jiang, Xy. et al. Phenome-wide association study and precision medicine of cardiovascular diseases in the post-COVID-19 era. Acta Pharmacol Sin 44, 2347–2357 (2023). https://doi.org/10.1038/s41401-023-01119-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01119-1

Keywords

Search

Quick links