Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Loss of DJ-1 function contributes to Parkinson’s disease pathogenesis in mice via RACK1-mediated PKC activation and MAO-B upregulation

Abstract

Parkinson’s disease (PD) is a common neurodegenerative motor disorder characterized by a dramatic reduction in pars compacta of substantia nigra dopaminergic neurons and striatal dopamine (DA) levels. Mutations or deletions in the PARK7/DJ-1 gene are associated with an early-onset familial form of PD. DJ-1 protein prevents neurodegeneration via its regulation of oxidative stress and mitochondrial function as well as its roles in transcription and signal transduction. In this study, we investigated how loss of DJ-1 function affected DA degradation, ROS generation and mitochondrial dysfunction in neuronal cells. We showed that loss of DJ-1 significantly increased the expression of monoamine oxidase (MAO)-B but not MAO-A in both neuronal cells and primary astrocytes. In DJ-1-knockout (KO) mice, MAO-B protein levels in the substantia nigra (SN) and striatal regions were significantly increased. We demonstrated that the induction of MAO-B expression by DJ-1 deficiency depended on early growth response 1 (EGR1) in N2a cells. By coimmunoprecipitation omics analysis, we found that DJ-1 interacted with receptor of activated protein C kinase 1 (RACK1), a scaffolding protein, and thus inhibited the activity of the PKC/JNK/AP-1/EGR1 cascade. The PKC inhibitor sotrastaurin or the JNK inhibitor SP600125 completely inhibited DJ-1 deficiency-induced EGR1 and MAO-B expression in N2a cells. Moreover, the MAO-B inhibitor rasagiline inhibited mitochondrial ROS generation and rescued neuronal cell death caused by DJ-1 deficiency, especially in response to MPTP stimulation in vitro and in vivo. These results suggest that DJ-1 exerts neuroprotective effects by inhibiting the expression of MAO-B distributed at the mitochondrial outer membrane, which mediates DA degradation, ROS generation and mitochondrial dysfunction. This study reveals a mechanistic link between DJ-1 and MAO-B expression and contributes to understanding the crosslinks among pathogenic factors, mitochondrial dysfunction and oxidative stress in PD pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DJ-1 deficiency affects DA metabolic gene expression according to RNAseq.
Fig. 2: MAO-B but not MAO-A expression is upregulated by DJ-1 deficiency.
Fig. 3: The regulation of MAO-B expression by DJ-1 is EGR1 dependent.
Fig. 4: EGR1 expression is activated by DJ-1 deficiency.
Fig. 5: AP-1 is responsible for DJ-1 deficiency-induced EGR1 and MAO-B expression.
Fig. 6: DJ-1 interacts with RACK1.
Fig. 7: PKC activation contributes to MAO-B expression by DJ-1 deficiency.
Fig. 8: Inhibition of MAO-B activity prevents the sensitization to neuronal damage caused by DJ-1 deficiency.
Fig. 9: Schematic diagram of the mechanism by which DJ-1 regulates MAO-B expression.

Similar content being viewed by others

Data availability

The data supporting the findings in this study are available within the paper. Other transcriptome sequencing and mass spectrometry data supporting the findings of this study are available from the corresponding author on reasonable request.

References

  1. Kalia LV, Lang AE. Parkinson’s disease. Lancet. 2015;386:896–912.

    Article  CAS  PubMed  Google Scholar 

  2. Bloem BR, Okun MS, Klein C. Parkinson’s disease. Lancet. 2021;397:2284–303.

    Article  CAS  PubMed  Google Scholar 

  3. Liu Y, Niu L, Liu X, Cheng C, Le W. Recent progress in non-motor features of Parkinson’s disease with a focus on circadian rhythm dysregulation. Neurosci Bull. 2021;37:1010–24.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Armstrong MJ, Okun MS. Diagnosis and treatment of Parkinson disease: a review. JAMA. 2020;323:548–60.

    Article  PubMed  Google Scholar 

  5. Li S, Jia C, Li T, Le W. Hot topics in recent Parkinson’s disease research: where we are and where we should go. Neurosci Bull. 2021;37:1735–44.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mao Q, Qin WZ, Zhang A, Ye N. Recent advances in dopaminergic strategies for the treatment of Parkinson’s disease. Acta Pharmacol Sin. 2020;41:471–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Trist BG, Hare DJ, Double KL. Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease. Aging Cell. 2019;18:e13031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron. 2003;39:889–909.

    Article  CAS  PubMed  Google Scholar 

  9. Malpartida AB, Williamson M, Narendra DP, Wade-Martins R, Ryan BJ. Mitochondrial dysfunction and mitophagy in Parkinson’s disease: from mechanism to therapy. Trends Biochem Sci. 2021;46:329–43.

    Article  CAS  PubMed  Google Scholar 

  10. Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science. 2003;299:256–9.

    Article  CAS  PubMed  Google Scholar 

  11. Kumaran R, Vandrovcova J, Luk C, Sharma S, Renton A, Wood NW, et al. Differential DJ-1 gene expression in Parkinson’s disease. Neurobiol Dis. 2009;36:393–400.

    Article  CAS  PubMed  Google Scholar 

  12. Neves M, Graos M, Anjo SI, Manadas B. Modulation of signaling pathways by DJ-1: An updated overview. Redox Biol. 2022;51:102283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dekker M, Bonifati V, van Swieten J, Leenders N, Galjaard RJ, Snijders P, et al. Clinical features and neuroimaging of PARK7-linked parkinsonism. Mov Disord. 2003;18:751–7.

    Article  PubMed  Google Scholar 

  14. Dekker MC, Eshuis SA, Maguire RP, Veenma-van der Duijn L, Pruim J, Snijders PJ, et al. PET neuroimaging and mutations in the DJ-1 gene. J Neural Transm (Vienna). 2004;111:1575–81.

    Article  CAS  PubMed  Google Scholar 

  15. Xu X, Wang R, Hao Z, Wang G, Mu C, Ding J, et al. DJ-1 regulates tyrosine hydroxylase expression through CaMKKbeta/CaMKIV/CREB1 pathway in vitro and in vivo. J Cell Physiol. 2020;235:869–79.

    Article  CAS  PubMed  Google Scholar 

  16. Lu L, Sun X, Liu Y, Zhao H, Zhao S, Yang H. DJ-1 upregulates tyrosine hydroxylase gene expression by activating its transcriptional factor Nurr1 via the ERK1/2 pathway. Int J Biochem Cell Biol. 2012;44:65–71.

    Article  CAS  PubMed  Google Scholar 

  17. Ishikawa S, Taira T, Takahashi-Niki K, Niki T, Ariga H, Iguchi-Ariga SM. Human DJ-1-specific transcriptional activation of tyrosine hydroxylase gene. J Biol Chem. 2010;285:39718–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhong N, Kim CY, Rizzu P, Geula C, Porter DR, Pothos EN, et al. DJ-1 transcriptionally up-regulates the human tyrosine hydroxylase by inhibiting the sumoylation of pyrimidine tract-binding protein-associated splicing factor. J Biol Chem. 2006;281:20940–8.

    Article  CAS  PubMed  Google Scholar 

  19. Burbulla LF, Song P, Mazzulli JR, Zampese E, Wong YC, Jeon S, et al. Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease. Science. 2017;357:1255–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Masato A, Plotegher N, Boassa D, Bubacco L. Impaired dopamine metabolism in Parkinson’s disease pathogenesis. Mol Neurodegener. 2019;14:35.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Juarez Olguin H, Calderon Guzman D, Hernandez Garcia E, Barragan Mejia G. The role of dopamine and its dysfunction as a consequence of oxidative stress. Oxid Med Cell Longev. 2016;2016:9730467.

    Article  PubMed  Google Scholar 

  22. Naoi M, Maruyama W, Inaba-Hasegawa K. Type A and B monoamine oxidase in age-related neurodegenerative disorders: their distinct roles in neuronal death and survival. Curr Top Med Chem. 2012;12:2177–88.

    Article  CAS  PubMed  Google Scholar 

  23. Tipton KF, Boyce S, O’Sullivan J, Davey GP, Healy J. Monoamine oxidases: certainties and uncertainties. Curr Med Chem. 2004;11:1965–82.

    Article  CAS  PubMed  Google Scholar 

  24. Youdim MB, Edmondson D, Tipton KF. The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci. 2006;7:295–309.

    Article  CAS  PubMed  Google Scholar 

  25. Damier P, Kastner A, Agid Y, Hirsch EC. Does monoamine oxidase type B play a role in dopaminergic nerve cell death in Parkinson’s disease? Neurology. 1996;46:1262–9.

    Article  CAS  PubMed  Google Scholar 

  26. Kang SS, Ahn EH, Zhang Z, Liu X, Manfredsson FP, Sandoval IM, et al. alpha-Synuclein stimulation of monoamine oxidase-B and legumain protease mediates the pathology of Parkinson’s disease. EMBO J. 2018;37:e98878.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Goldberg MS, Pisani A, Haburcak M, Vortherms TA, Kitada T, Costa C, et al. Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial Parkinsonism-linked gene DJ-1. Neuron. 2005;45:489–96.

    Article  CAS  PubMed  Google Scholar 

  28. Ren H, Fu K, Wang D, Mu C, Wang G. Oxidized DJ-1 interacts with the mitochondrial protein BCL-XL. J Biol Chem. 2011;286:35308–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ren H, Fu K, Mu C, Zhen X, Wang G. L166P mutant DJ-1 promotes cell death by dissociating Bax from mitochondrial Bcl-XL. Mol Neurodegener. 2012;7:40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Clarke N, Arenzana N, Hai T, Minden A, Prywes R. Epidermal growth factor induction of the c-jun promoter by a Rac pathway. Mol Cell Biol. 1998;18:1065–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vasanwala FH, Kusam S, Toney LM, Dent AL. Repression of AP-1 function: a mechanism for the regulation of Blimp-1 expression and B lymphocyte differentiation by the B cell lymphoma-6 protooncogene. J Immunol. 2002;169:1922–9.

    Article  CAS  PubMed  Google Scholar 

  32. Xia Q, Hu Q, Wang H, Yang H, Gao F, Ren H, et al. Induction of COX-2-PGE2 synthesis by activation of the MAPK/ERK pathway contributes to neuronal death triggered by TDP-43-depleted microglia. Cell Death Dis. 2015;6:e1702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guo DK, Zhu Y, Sun HY, Xu XY, Zhang S, Hao ZB, et al. Pharmacological activation of REV-ERBalpha represses LPS-induced microglial activation through the NF-kappaB pathway. Acta Pharmacol Sin. 2019;40:26–34.

    Article  PubMed  Google Scholar 

  34. Sun HY, Wu J, Wang R, Zhang S, Xu H, Kaznacheyeva Е, et al. Pazopanib alleviates neuroinflammation and protects dopaminergic neurons in LPS-stimulated mouse model by inhibiting MEK4-JNK-AP-1 pathway. Acta Pharmacol Sin. 2022. https://doi.org/10.1038/s41401-022-01030-1. Online ahead of print.

  35. Gonzalez-Lopez E, Vrana KE. Dopamine beta-hydroxylase and its genetic variants in human health and disease. J Neurochem. 2020;152:157–81.

    Article  CAS  PubMed  Google Scholar 

  36. Shih JC, Wu JB, Chen K. Transcriptional regulation and multiple functions of MAO genes. J Neural Transm (Vienna). 2011;118:979–86.

    Article  CAS  PubMed  Google Scholar 

  37. Wong WK, Ou XM, Chen K, Shih JC. Activation of human monoamine oxidase B gene expression by a protein kinase C MAPK signal transduction pathway involves c-Jun and Egr-1. J Biol Chem. 2002;277:22222–30.

    Article  CAS  PubMed  Google Scholar 

  38. Arige V, Agarwal A, Khan AA, Kalyani A, Natarajan B, Gupta V, et al. Regulation of monoamine oxidase B gene expression: key roles for transcription factors Sp1, Egr1 and CREB, and microRNAs miR-300 and miR-1224. J Mol Biol. 2019;431:1127–47.

    Article  CAS  PubMed  Google Scholar 

  39. Shih JC, Chen K. Regulation of MAO-A and MAO-B gene expression. Curr Med Chem. 2004;11:1995–2005.

    Article  CAS  PubMed  Google Scholar 

  40. Hijioka M, Inden M, Yanagisawa D, Kitamura Y. DJ-1/PARK7: A new therapeutic target for neurodegenerative disorders. Biol Pharm Bull. 2017;40:548–52.

    Article  CAS  PubMed  Google Scholar 

  41. Ou XM, Chen K, Shih JC. Dual functions of transcription factors, transforming growth factor-beta-inducible early gene (TIEG)2 and Sp3, are mediated by CACCC element and Sp1 sites of human monoamine oxidase (MAO) B gene. J Biol Chem. 2004;279:21021–8.

    Article  CAS  PubMed  Google Scholar 

  42. Grunewald M, Johnson S, Lu D, Wang Z, Lomberk G, Albert PR, et al. Mechanistic role for a novel glucocorticoid-KLF11 (TIEG2) protein pathway in stress-induced monoamine oxidase A expression. J Biol Chem. 2012;287:24195–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hoffmann E, Ashouri J, Wolter S, Doerrie A, Dittrich-Breiholz O, Schneider H, et al. Transcriptional regulation of EGR-1 by the interleukin-1-JNK-MKK7-c-Jun pathway. J Biol Chem. 2008;283:12120–8.

    Article  CAS  PubMed  Google Scholar 

  44. Aggeli IK, Beis I, Gaitanaki C. ERKs and JNKs mediate hydrogen peroxide-induced Egr-1 expression and nuclear accumulation in H9c2 cells. Physiol Res. 2010;59:443–54.

    Article  CAS  PubMed  Google Scholar 

  45. Iyoda T, Zhang F, Sun L, Hao F, Schmitz-Peiffer C, Xu X, et al. Lysophosphatidic acid induces early growth response-1 (Egr-1) protein expression via protein kinase Cdelta-regulated extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) activation in vascular smooth muscle cells. J Biol Chem. 2012;287:22635–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pagel JI, Deindl E. Disease progression mediated by egr-1 associated signaling in response to oxidative stress. Int J Mol Sci. 2012;13:13104–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Angel P, Hattori K, Smeal T, Karin M. The jun proto-oncogene is positively autoregulated by its product, Jun/AP-1. Cell. 1988;55:875–85.

    Article  CAS  PubMed  Google Scholar 

  48. Behrens A, Sibilia M, Wagner EF. Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nat Genet. 1999;21:326–9.

    Article  CAS  PubMed  Google Scholar 

  49. Kappelmann M, Bosserhoff A, Kuphal S. AP-1/c-Jun transcription factors: regulation and function in malignant melanoma. Eur J Cell Biol. 2014;93:76–81.

    Article  CAS  PubMed  Google Scholar 

  50. Li JJ, Xie D. RACK1, a versatile hub in cancer. Oncogene. 2015;34:1890–8.

    Article  CAS  PubMed  Google Scholar 

  51. Lopez-Bergami P, Ronai Z. Requirements for PKC-augmented JNK activation by MKK4/7. Int J Biochem Cell Biol. 2008;40:1055–64.

    Article  CAS  PubMed  Google Scholar 

  52. Lopez-Bergami P, Habelhah H, Bhoumik A, Zhang W, Wang LH, Ronai Z. RACK1 mediates activation of JNK by protein kinase C [corrected]. Mol Cell. 2005;19:309–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Miller DW, Ahmad R, Hague S, Baptista MJ, Canet-Aviles R, McLendon C, et al. L166P mutant DJ-1, causative for recessive Parkinson’s disease, is degraded through the ubiquitin-proteasome system. J Biol Chem. 2003;278:36588–95.

    Article  CAS  PubMed  Google Scholar 

  54. Tan YY, Jenner P, Chen SD. Monoamine oxidase-B inhibitors for the treatment of Parkinson’s disease: past, present, and future. J Parkinsons Dis. 2022;12:477–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nicotra A, Pierucci F, Parvez H, Senatori O. Monoamine oxidase expression during development and aging. Neurotoxicology. 2004;25:155–65.

    Article  CAS  PubMed  Google Scholar 

  56. Li L, Zhang CW, Chen GY, Zhu B, Chai C, Xu QH, et al. A sensitive two-photon probe to selectively detect monoamine oxidase B activity in Parkinson’s disease models. Nat Commun. 2014;5:3276.

    Article  PubMed  Google Scholar 

  57. Weng M, Xie X, Liu C, Lim KL, Zhang CW, Li L. The sources of reactive oxygen species and its possible role in the pathogenesis of Parkinson’s disease. Parkinsons Dis. 2018;2018:9163040.

    PubMed  PubMed Central  Google Scholar 

  58. Saller S, Kunz L, Berg D, Berg U, Lara H, Urra J, et al. Dopamine in human follicular fluid is associated with cellular uptake and metabolism-dependent generation of reactive oxygen species in granulosa cells: implications for physiology and pathology. Hum Reprod. 2014;29:555–67.

    Article  CAS  PubMed  Google Scholar 

  59. Kristal BS, Conway AD, Brown AM, Jain JC, Ulluci PA, Li SW, et al. Selective dopaminergic vulnerability: 3,4-dihydroxyphenylacetaldehyde targets mitochondria. Free Radic Biol Med. 2001;30:924–31.

    Article  CAS  PubMed  Google Scholar 

  60. Cohen G, Kesler N. Monoamine oxidase and mitochondrial respiration. J Neurochem. 1999;73:2310–5.

    Article  CAS  PubMed  Google Scholar 

  61. Singh YP, Pandey A, Vishwakarma S, Modi G. A review on iron chelators as potential therapeutic agents for the treatment of Alzheimer’s and Parkinson’s diseases. Mol Divers. 2019;23:509–26.

    Article  CAS  PubMed  Google Scholar 

  62. Ben-Shachar D, Zuk R, Glinka Y. Dopamine neurotoxicity: inhibition of mitochondrial respiration. J Neurochem. 1995;64:718–23.

    Article  CAS  PubMed  Google Scholar 

  63. Sanchez-Rodriguez R, Munari F, Angioni R, Venegas F, Agnellini A, Castro-Gil MP, et al. Targeting monoamine oxidase to dampen NLRP3 inflammasome activation in inflammation. Cell Mol Immunol. 2021;18:1311–3.

    Article  CAS  PubMed  Google Scholar 

  64. da Costa CA. DJ-1: a newcomer in Parkinson’s disease pathology. Curr Mol Med. 2007;7:650–7.

    Article  PubMed  Google Scholar 

  65. Lev N, Barhum Y, Pilosof NS, Ickowicz D, Cohen HY, Melamed E, et al. DJ-1 protects against dopamine toxicity: implications for Parkinson’s disease and aging. J Gerontol A Biol Sci Med Sci. 2013;68:215–25.

    Article  CAS  PubMed  Google Scholar 

  66. Lev N, Ickowicz D, Barhum Y, Lev S, Melamed E, Offen D. DJ-1 protects against dopamine toxicity. J Neural Transm (Vienna). 2009;116:151–60.

    Article  CAS  PubMed  Google Scholar 

  67. Trudler D, Weinreb O, Mandel SA, Youdim MB, Frenkel D. DJ-1 deficiency triggers microglia sensitivity to dopamine toward a pro-inflammatory phenotype that is attenuated by rasagiline. J Neurochem. 2014;129:434–47.

    Article  CAS  PubMed  Google Scholar 

  68. Jiang HB, Jiang Q, Liu WH, Feng J. Parkin suppresses the expression of monoamine oxidases. J Biol Chem. 2006;281:8591–9.

    Article  CAS  PubMed  Google Scholar 

  69. Siddiqui A, Hanson I, Andersen JK. Mao-B elevation decreases parkin’s ability to efficiently clear damaged mitochondria: protective effects of rapamycin. Free Radic Res. 2012;46:1011–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Smith TS, Trimmer PA, Khan SM, Tinklepaugh DL, Bennett JP Jr. Mitochondrial toxins in models of neurodegenerative diseases. II: Elevated zif268 transcription and independent temporal regulation of striatal D1 and D2 receptor mRNAs and D1 and D2 receptor-binding sites in C57BL/6 mice during MPTP treatment. Brain Res. 1997;765:189–97.

    Article  CAS  PubMed  Google Scholar 

  71. Xie B, Wang C, Zheng Z, Song B, Ma C, Thiel G, et al. Egr-1 transactivates Bim gene expression to promote neuronal apoptosis. J Neurosci. 2011;31:5032–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yu Q, Huang Q, Du X, Xu S, Li M, Ma S. Early activation of Egr-1 promotes neuroinflammation and dopaminergic neurodegeneration in an experimental model of Parkinson’s disease. Exp Neurol. 2018;302:145–54.

    Article  CAS  PubMed  Google Scholar 

  73. Cao J, Lou S, Ying M, Yang B. DJ-1 as a human oncogene and potential therapeutic target. Biochem Pharmacol. 2015;93:241–50.

    Article  CAS  PubMed  Google Scholar 

  74. Kim EK, Choi EJ. Compromised MAPK signaling in human diseases: an update. Arch Toxicol. 2015;89:867–82.

    Article  CAS  PubMed  Google Scholar 

  75. Ren H, Fu K, Mu C, Li B, Wang D, Wang G. DJ-1, a cancer and Parkinson’s disease associated protein, regulates autophagy through JNK pathway in cancer cells. Cancer Lett. 2010;297:101–8.

    Article  CAS  PubMed  Google Scholar 

  76. Kershner L, Welshhans K. RACK1 regulates neural development. Neural Regen Res. 2017;12:1036–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ma J, Wu R, Zhang Q, Wu JB, Lou J, Zheng Z, et al. DJ-1 interacts with RACK1 and protects neurons from oxidative-stress-induced apoptosis. Biochem J. 2014;462:489–97.

    Article  CAS  PubMed  Google Scholar 

  78. Yamamori T, Mizobata A, Saito Y, Urano Y, Inanami O, Irani K, et al. Phosphorylation of p66shc mediates 6-hydroxydopamine cytotoxicity. Free Radic Res. 2011;45:342–50.

    Article  CAS  PubMed  Google Scholar 

  79. Do Van B, Gouel F, Jonneaux A, Timmerman K, Gele P, Petrault M, et al. Ferroptosis, a newly characterized form of cell death in Parkinson’s disease that is regulated by PKC. Neurobiol Dis. 2016;94:169–78.

    Article  PubMed  Google Scholar 

  80. Zhu HY, He QJ, Yang B, Cao J. Beyond iron deposition: making sense of the latest evidence on ferroptosis in Parkinson’s disease. Acta Pharmacol Sin. 2021;42:1379–81.

    Article  CAS  PubMed  Google Scholar 

  81. Mo JS, Kim MY, Ann EJ, Hong JA, Park HS. DJ-1 modulates UV-induced oxidative stress signaling through the suppression of MEKK1 and cell death. Cell Death Differ. 2008;15:1030–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 32170987, 31970966 and 32261133525), the Russian Science Foundation (No. 23-44-00054), the Natural Science Foundation of Jiangsu Province (BK20200213) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Contributions

HGR and BL designed the study. LLL, YH, and ZJZ performed most of the experiments. YQW, YWH, and BL performed some of the biochemical and cellular experiments. EK, JQD, and DKG analyzed the data. HGR drafted the paper. BL and GHW revised the paper. All authors read and approved the paper.

Corresponding authors

Correspondence to Bin Li or Hai-gang Ren.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Ll., Han, Y., Zhang, Zj. et al. Loss of DJ-1 function contributes to Parkinson’s disease pathogenesis in mice via RACK1-mediated PKC activation and MAO-B upregulation. Acta Pharmacol Sin 44, 1948–1961 (2023). https://doi.org/10.1038/s41401-023-01104-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01104-8

Keywords

Search

Quick links