Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crif1 deficiency in dopamine neurons triggers early-onset parkinsonism

A Correction to this article was published on 02 October 2023

This article has been updated

Abstract

Mitochondrial dysfunction has been implicated in Parkinson’s Disease (PD) progression; however, the mitochondrial factors underlying the development of PD symptoms remain unclear. One candidate is CR6-interacting factor1 (CRIF1), which controls translation and membrane insertion of 13 mitochondrial proteins involved in oxidative phosphorylation. Here, we found that CRIF1 mRNA and protein expression were significantly reduced in postmortem brains of elderly PD patients compared to normal controls. To evaluate the effect of Crif1 deficiency, we produced mice lacking the Crif1 gene in dopaminergic neurons (DAT-CRIF1-KO mice). From 5 weeks of age, DAT-CRIF1-KO mice began to show decreased dopamine production with progressive neuronal degeneration in the nigral area. At ~10 weeks of age, they developed PD-like behavioral deficits, including gait abnormalities, rigidity, and resting tremor. L-DOPA, a medication used to treat PD, ameliorated these defects at an early stage, although it was ineffective in older mice. Taken together, the observation that CRIF1 expression is reduced in human PD brains and deletion of CRIF1 in dopaminergic neurons leads to early-onset PD with stepwise PD progression support the conclusion that CRIF1-mediated mitochondrial function is important for the survival of dopaminergic neurons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Decreased expression of CRIF1 in the SNpc of PD patients.
Fig. 2: Progressive decrease in TH expression in DAT-CRIF1-KO mice created using the Cre-loxP system.
Fig. 3: Progressive decrease in dopamine and its metabolites in the nigrostriatal pathway with mitochondrial dysfunction in DAT-CRIF1-KO mice.
Fig. 4: Increased GFAP and Iba-1 expression in the nigrostriatal pathway of DAT-CRIF1-KO mice.
Fig. 5: Decreased behavioral activity in DAT-CRIF1-KO mice and recovery with L-DOPA.

Similar content being viewed by others

Change history

References

  1. Dawson TM, Dawson VL. Molecular pathways of neurodegeneration in Parkinson’s disease. Science. 2003;302:819–22.

    Article  CAS  PubMed  Google Scholar 

  2. Schapira AH. Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol. 2008;7:97–109.

    Article  CAS  PubMed  Google Scholar 

  3. Przedborski S, Vila M. The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model: a tool to explore the pathogenesis of Parkinson’s disease. Ann NY Acad Sci. 2003;991:189–98.

    Article  CAS  PubMed  Google Scholar 

  4. Li N, Ragheb K, Lawler G, Sturgis J, Rajwa B, Melendez JA, et al. Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem. 2003;278:8516–25.

    Article  CAS  PubMed  Google Scholar 

  5. Moore DJ, West AB, Dawson VL, Dawson TM. Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci. 2005;28:57–87.

    Article  CAS  PubMed  Google Scholar 

  6. Palacino JJ, Sagi D, Goldberg MS, Krauss S, Motz C, Wacker M, et al. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem. 2004;279:18614–22.

    Article  CAS  PubMed  Google Scholar 

  7. Exner N, Treske B, Paquet D, Holmstrom K, Schiesling C, Gispert S, et al. Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin. J Neurosci. 2007;27:12413–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Heo JY, Park JH, Kim SJ, Seo KS, Han JS, Lee SH, et al. DJ-1 null dopaminergic neuronal cells exhibit defects in mitochondrial function and structure: involvement of mitochondrial complex I assembly. PLoS One. 2012;7:e32629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dawson TM, Ko HS, Dawson VL. Genetic animal models of Parkinson’s disease. Neuron. 2010;66:646–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Song L, Shan Y, Lloyd KC, Cortopassi GA. Mutant Twinkle increases dopaminergic neurodegeneration, mtDNA deletions and modulates Parkin expression. Hum Mol Genet. 2012;21:5147–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ekstrand MI, Terzioglu M, Galter D, Zhu S, Hofstetter C, Lindqvist E, et al. Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons. Proc Natl Acad Sci USA. 2007;104:1325–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim SJ, Kwon MC, Ryu MJ, Chung HK, Tadi S, Kim YK, et al. CRIF1 is essential for the synthesis and insertion of oxidative phosphorylation polypeptides in the mammalian mitochondrial membrane. Cell Metab. 2012;16:274–83.

    Article  CAS  PubMed  Google Scholar 

  13. Byun J, Son SM, Cha MY, Shong M, Hwang YJ, Kim Y, et al. CR6-interacting factor 1 is a key regulator in Aβ-induced mitochondrial disruption and pathogenesis of Alzheimer’s disease. Cell Death Differ. 2015;22:959–73.

    Article  CAS  PubMed  Google Scholar 

  14. Proft J, Faraji J, Robbins JC, Zucchi FC, Zhao X, Metz GA, et al. Identification of bilateral changes in TID1 expression in the 6-OHDA rat model of Parkinson’s disease. PLoS One. 2011;6:e26045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhuang X, Masson J, Gingrich JA, Rayport S, Hen R. Targeted gene expression in dopamine and serotonin neurons of the mouse brain. J Neurosci Methods. 2005;143:27–32.

    Article  CAS  PubMed  Google Scholar 

  16. Turiault M, Parnaudeau S, Milet A, Parlato R, Rouzeau JD, Lazar M, et al. Analysis of dopamine transporter gene expression pattern – generation of DAT-iCre transgenic mice. FEBS J. 2007;274:3568–77.

    Article  CAS  PubMed  Google Scholar 

  17. Kwon MC, Koo BK, Moon JS, Kim YY, Park KC, Kim NS, et al. Crif1 is a novel transcriptional coactivator of STAT3. EMBO J. 2008;27:642–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chung YC, Kim SR, Jin BK. Paroxetine prevents loss of nigrostriatal dopaminergic neurons by inhibiting brain inflammation and oxidative stress in an experimental model of Parkinson’s disease. J Immunol. 2010;185:1230–7.

    Article  CAS  PubMed  Google Scholar 

  19. West MJ, Slomianka L, Gundersen HJ. Unbiased stereological estimation of the total number of neurons in thesubdivisions of the rat hippocampus using the optical fractionator. Anat Rec. 1991;231:482–97.

    Article  CAS  PubMed  Google Scholar 

  20. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  CAS  PubMed  Google Scholar 

  21. Jo S, Yarishkin O, Hwang YJ, Chun YE, Park M, Woo DH, et al. GABA from reactive astrocytes impairs memory in mouse models of Alzheimer’s disease. Nat Med. 2014;20:886–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fearnley JM, Lees AJ. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain. 1991;114:2283–301.

    Article  PubMed  Google Scholar 

  23. Gelb DJ, Oliver E, Gilman S. Diagnostic criteria for Parkinson disease. Arch Neurol. 1999;56:33–39.

    Article  CAS  PubMed  Google Scholar 

  24. Moran LB, Duke DC, Deprez M, Dexter DT, Pearce RK, Graeber MB. Whole genome expression profiling of the medial and lateral substantia nigra in Parkinson’s disease. Neurogenetics. 2006;7:1–11.

    Article  CAS  PubMed  Google Scholar 

  25. Riley BE, Gardai SJ, Emig-Agius D, Bessarabova M, Ivliev AE, Schule B, et al. Systems-based analyses of brain regions functionally impacted in Parkinson’s disease reveals underlying causal mechanisms. PLoS One. 2014;9:e102909.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Halliday G, Lees A, Stern M. Milestones in Parkinson’s disease–clinical and pathologic features. Mov Disord. 2011;26:1015–21.

    Article  PubMed  Google Scholar 

  27. Schrag A, Schott JM. Epidemiological, clinical, and genetic characteristics of early-onset parkinsonism. Lancet Neurol. 2006;5:355–63.

    Article  CAS  PubMed  Google Scholar 

  28. Husain M, Shukla R, Dikshit M, Maheshwari PK, Nag D, Srimal RC, et al. Altered platelet monoamine oxidase-B activity in idiopathic Parkinson’s disease. Neurochem Res. 2009;34:1427–32.

    Article  CAS  PubMed  Google Scholar 

  29. Tian C, Liu Y, Li Z, Zhu P, Zhao M. Mitochondria related cell death modalities and disease. Front Cell Dev Biol. 2022;10:832356.

  30. McBride HM. Parkin mitochondria in the autophagosome. J Cell Biol. 2008;183:757–9.

  31. Bertoli-Avella AM, Giroud-Benitez JL, Bonifati V, Alvarez-Gonzalez E, Heredero-Baute L, van Duijn CM, et al. Suggestive linkage to chromosome 19 in a large Cuban family with late-onset Parkinson’s disease. Mov Disord. 2003;18:1240–9.

    Article  PubMed  Google Scholar 

  32. Schrag A, Schott JM. Epidemiological, clinical, and genetic characteristics of early-onset parkinsonism. Lancet Neurol. 2006;5:355–63.

    Article  CAS  PubMed  Google Scholar 

  33. Lee HJ, Suk JE, Patrick C, Bae EJ, Cho JH, Rho S, et al. Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem. 2010;285:9262–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mahul-Mellier AL, Burtscher J, Maharjan N, Weerens L, Croisier M, Kuttler F, et al. The process of Lewy body formation, rather than simply α-synuclein fibrillization, is one of the major drivers of neurodegeneration. Proc Natl Acad Sci USA. 2020;117:4971–82.

  35. Backman CM, Malik N, Zhang Y, Shan L, Grinberg A, Hoffer BJ, et al. Characterization of a mouse strain expressing Cre recombinase from the 3’ untranslated region of the dopamine transporter locus. Genesis. 2006;44:383–90.

    Article  CAS  PubMed  Google Scholar 

  36. Miklossy J, Doudet DD, Schwab C, Yu S, McGeer EG, McGeer PL. Role of ICAM-1 in persisting inflammation in Parkinson disease and MPTP monkeys. Exp Neurol. 2006;197:275–83.

    Article  CAS  PubMed  Google Scholar 

  37. Schmidt S, Linnartz B, Mendritzki S, Sczepan T, Lubbert M, Stichel CC, et al. Genetic mouse models for Parkinson’s disease display severe pathology in glial cell mitochondria. Hum Mol Genet. 2011;20:1197–211.

    Article  CAS  PubMed  Google Scholar 

  38. Spirduso WW, Gilliam PE, Schallert T, Upchurch M, Vaughn DM, Wilcox RE. Reactive capacity: a sensitive behavioral marker of movement initiation and nigrostriatal dopamine function. Brain Res. 1985;335:45–54.

    Article  CAS  PubMed  Google Scholar 

  39. Kim ST, Son HJ, Choi JH, Ji IJ, Hwang O. Vertical grid test and modified horizontal grid test are sensitive methods for evaluating motor dysfunctions in the MPTP mouse model of Parkinson’s disease. Brain Res. 2010;1306:176–83.

  40. Remy P, Doder M, Lees A, Turjanski N, Brooks D. Depression in Parkinson’s disease: loss of dopamine and noradrenaline innervation in the limbic system. Brain. 2005;128:1314–22.

    Article  PubMed  Google Scholar 

  41. Cryan JF, Mombereau C, Vassout A. The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev. 2005;29:571–625.

  42. Timmermann L, Gross J, Dirks M, Volkmann J, Freund HJ, Schnitzler A. The cerebral oscillatory network of parkinsonian resting tremor. Brain. 2003;126:199–212.

    Article  PubMed  Google Scholar 

  43. Lewitt PA. Levodopa for the treatment of Parkinson’s disease. N Engl J Med. 2008;359:2468–76.

    Article  CAS  PubMed  Google Scholar 

  44. Lloyd KG, Davidson L, Hornykiewicz O. The neurochemistry of Parkinson’s disease: effect of L-dopa therapy. J Pharmacol Exp Therap. 1975;195:453–64.

    CAS  Google Scholar 

  45. Kelly PJ, Gillingham FJ. The long-term results of stereotaxic surgery and L-dopa therapy in patients with Parkinson’s disease. A 10-year follow-up study. J Neurosurg. 1980;53:332–7.

    Article  CAS  PubMed  Google Scholar 

  46. Lees AJ, Tolosa E, Olanow CW. Four pioneers of L-dopa treatment: Arvid Carlsson, Oleh Hornykiewicz, George Cotzias, and Melvin Yahr. Mov Disord. 2015;30:19–36.

    Article  CAS  PubMed  Google Scholar 

  47. Surmeier DJ, Guzman JN, Sanchez-Padilla J, Schumacker PT. The role of calcium and mitochondrial oxidant stress in the loss of substantia nigra pars compacta dopaminergic neurons in Parkinson’s disease. Neuroscience. 2011;198:221–31.

    Article  CAS  PubMed  Google Scholar 

  48. Maingay M, Romero-Ramos M, Carta M, Kirik D. Ventral tegmental area dopamine neurons are resistant to human mutant alpha-synuclein overexpression. Neurobiol Dis. 2006;23:522–32.

    Article  CAS  PubMed  Google Scholar 

  49. Luk KC, Rymar VV, van den Munckhof P, Nicolau S, Steriade C, Bifsha P, et al. The transcription factor Pitx3 is expressed selectively in midbrain dopaminergic neurons susceptible to neurodegenerative stress. J Neurochem. 2013;125:932–43.

    Article  CAS  PubMed  Google Scholar 

  50. Cheng HC, Ulane CM, Burke RE. Clinical progression in Parkinson disease and the neurobiology of axons. Ann Neurol. 2010;67:715–25.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sheng ZH, Cai Q. Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat Rev Neurosci. 2012;13:77–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cardinal RN, Parkinson JA, Hall J, Everitt BJ. Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev. 2002;26:321–52.

    Article  PubMed  Google Scholar 

  53. Atallah HE, Lopez-Paniagua D, Rudy JW, O’Reilly RC. Separate neural substrates for skill learning and performance in the ventral and dorsal striatum. Nat Neurosci. 2007;10:126–31.

    Article  CAS  PubMed  Google Scholar 

  54. Carriere N, Besson P, Dujardin K, Duhamel A, Defebvre L, Delmaire C, et al. Apathy in Parkinson’s disease is associated with nucleus accumbens atrophy: a magnetic resonance imaging shape analysis. Mov Disord. 2014;29:897–903.

    Article  PubMed  Google Scholar 

  55. Thanvi B, Lo N Fau - Robinson T, Robinson T. Levodopa-induced dyskinesia in Parkinson’s disease: clinical features, pathogenesis, prevention and treatment. Postgrad Med J. 2007;83:384–388.

  56. Turcano P, Mielke MM, Bower JH, Parisi JE, Cutsforth-Gregory JK, Ahlskog JE, et al. Levodopa-induced dyskinesia in Parkinson disease: a population-based cohort study. Neurology. 2018;91:e2238–43.

  57. Kumar N, van Gerpen JF, Bower JH, Ahlskog JE. Levodopa-dyskinesia incidence by age of Parkinson’s disease onset. Mov Disord. 2005;20(3):342–4.

  58. Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, et al. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell. 2011;144:810–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wender R, Brown AM, Fern R, Swanson RA, Farrell K, Ransom BR. Astrocytic glycogen influences axon function and survival during glucose deprivation in central white matter. J Neurosci. 2000;20:6804–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rosales-Corral S, Reiter RJ, Tan DX, Ortiz GG, Lopez-Armas G. Functional aspects of redox control during neuroinflammation. Antioxid Redox Signal. 2010;13:193–247.

    Article  CAS  PubMed  Google Scholar 

  61. Kang GM, Min SH, Lee CH, Kim JY, Lim HS, Choi MJ, et al. Mitohormesis in hypothalamic POMC neurons mediates regular exercise-induced high-turnover metabolism. Cell Metab. 2021;33:334–349.e6.

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIP) (2017R1A5A2015385, 2022R1A2C2002756 to JYH; 2022R1A2C3013280, RS-2023-00266872 to DK; 2020M3E5D9079742, 2022R1A2C3013138 to HR); a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health &Welfare, Republic of Korea (HR22C1734 to JYH); Hong Kong Research Grants Council Theme-based Research Scheme (T13-607/12R) grant to SKC; an NIH Grant (R01NS109537 to JL) and a KIST Grant (2E32233 to HR).

Author information

Authors and Affiliations

Authors

Contributions

JYH, AHP, HR, GRK and DK designed the research; JYH, AHP, MJL, YHH, YKK, YSJ, SKC, MJR, SYC, SJH and SJK performed experiments; JL collected human tissue; SYS, HJS and TDS contributed to the preparation of research tools and sampling; JMK, OH, SKC, MJR and MS analyzed data; JYH, AHP, MJL, HR, GRK, SKC and DK wrote the paper.

Corresponding authors

Correspondence to Hoon Ryu, Daesoo Kim or Gi Ryang Kweon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heo, J.Y., Park, A.H., Lee, M.J. et al. Crif1 deficiency in dopamine neurons triggers early-onset parkinsonism. Mol Psychiatry 28, 4474–4484 (2023). https://doi.org/10.1038/s41380-023-02234-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02234-5

Search

Quick links