Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Upregulation of p300 in paclitaxel-resistant TNBC: implications for cell proliferation via the PCK1/AMPK axis

Abstract

Objective

To explore the role of p300 in the context of paclitaxel (PTX) resistance in triple-negative breast cancer (TNBC) cells, focusing on its interaction with the phosphoenolpyruvate carboxykinase 1 (PCK1)/adenosine monophosphate-activated protein kinase (AMPK) pathway.

Methods

The expression of p300 and PCK1 at the messenger ribonucleic acid (mRNA) level was detected using a quantitative polymerase chain reaction. The GeneCards and GEPIA databases were used to investigate the relationship between p300 and PCK1. The MDA-MB-231/PTX cell line, known for its PTX resistance, was chosen to understand the specific role of p300 in such cells. The Lipofectamine™ 3000 reagent was used to transfer the p300 small interfering RNA and the overexpression of PCK1 plasmid into MDA-MB-231/PTX. The expression levels of p300, PCK1, 5′AMPK and phosphorylated AMPK (p-AMPK) were determined using the western blot test.

Results

In TNBC cancer tissue, the expression of p300 was increased compared with TNBC paracancerous tissue (P < 0.05). In the MDA-MB-231 cell line of TNBC, the expression of p300 was lower than in the PTX-resistant TNBC cells (MDA-MB-231/PTX) (P < 0.05). The PCK1 expression was decreased in the TNBC cancer tissue compared with TNBC paracancerous tissue, and the PCK1 expression was reduced in MDA-MB-231/PTX than in MDA-MB-231 (P < 0.05) indicating that PCK1 was involved in the resistance function. Additionally, p-AMPK was decreased in MDA-MB-231/PTX compared with MDA-MB-231 (P < 0.05). The adenosine triphosphate (ATP) level was also detected and was significantly lower in MDA-MB-231/PTX than in MDA-MB-231 (P < 0.05). Additionally, cell proliferation increased significantly in MDA-MB-231/PTX at 48 and 72 h (P < 0.05) suggesting that MDA-MB-231/PTX cells obtained the resistance function which was associated with AMPK and ATP level. When p300 was inhibited, p-AMPK and ATP levels elevated in MDA-MB-231/PTX (P < 0.05). When PCK1 was suppressed, the ATP consumption rate decreased, and cell proliferation increased (P < 0.05). However, there were no changes in p300.

Conclusions

In MDA-MB-231/PTX, p300 can inhibit p-AMPK and ATP levels by inhibiting PCK1 expression. Our findings suggest that targeting p300 could modulate the PCK1/AMPK axis, offering a potential therapeutic avenue for overcoming PTX resistance in TNBC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparing expression of p300 in the TNBC tissue, TNBC paracancerous tissue, in the TNBC cell line MDA-MB-231, and in paclitaxel resistance TNBC cells MDA-MB-231/PTX.
Fig. 2: Low expression of PCK1 in TNBC and MDA-MB-231/PTX.
Fig. 3: The results for AMPK activity and ATP levels in MDA-MB-231 and MDA-MB-231/PTX.
Fig. 4: The influence on the MDA-MB-231/PTX after p300 was inhibited.
Fig. 5: The influence on the MDA-MB-231/PTX after the PCK1 overexpressed (PCK1 OVE).

Similar content being viewed by others

Data availability

The datasets used and analysed during the current study are available from the corresponding author upon reasonable request.

References

  1. Newton EE, Mueller LE, Treadwell SM, Morris CA, Machado HL. Molecular targets of triple-negative breast cancer: where do we stand? Cancers. 2022;14:482 https://doi.org/10.3390/cancers14030482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li Y, Zhan Z, Yin X, Fu S, Deng X. Targeted therapeutic strategies for triple-negative breast cancer. Front Oncol. 2021;11:731535 https://doi.org/10.3389/fonc.2021.731535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baranova A, Krasnoselskyi M, Starikov V, Kartashov S, Zhulkevych I, Vlasenkoet V, et al. Triple-negative breast cancer: current treatment strategies and factors of negative prognosis. J Med Life. 2022;15:153–61. https://doi.org/10.25122/jml-2021-0108

    Article  PubMed  PubMed Central  Google Scholar 

  4. de Boniface J, Frisell J, Kühn T, Wiklander-Bråkenhielm I, Dembrower K, Nyman P, et al. False-negative rate in the extended prospective TATTOO trial evaluating targeted axillary dissection by carbon tattooing in clinically node-positive breast cancer patients receiving neoadjuvant systemic therapy. Breast Cancer Res Treat. 2022;193:589–95. https://doi.org/10.1007/s10549-022-06588-2

    Article  PubMed  PubMed Central  Google Scholar 

  5. Umeh-Garcia M, O’Geen H, Simion C, Gephart MH, Segal DJ, Sweeney CA. Aberrant promoter methylation contributes to LRIG1 silencing in basal/triple-negative breast cancer. Br J Cancer. 2022;127:436–48. https://doi.org/10.1038/s41416-022-01812-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liao M, Qin R, Huang W, Zhu HP, Peng F, Han B, et al. Targeting regulated cell death (RCD) with small-molecule compounds in triple-negative breast cancer: a revisited perspective from molecular mechanisms to targeted therapies. J Hematol Oncol. 2022;15:44 https://doi.org/10.1186/s13045-022-01260-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xiu M, Zhang P, Wang X, Fan Y, Li Q, Li Q, et al. Survival outcomes for dose-dense paclitaxel plus carboplatin neoadjuvant vs standard adjuvant chemotherapy in stage II to III triple-negative breast cancer: a prospective cohort study with propensity-matched analysis. Int J Cancer. 2022;151:578–89. https://doi.org/10.1002/ijc.34022

    Article  CAS  PubMed  Google Scholar 

  8. Asaduzzaman M, Constantinou S, Min H, Gallon J, Lin ML, Singh P, et al. Tumour suppressor EP300, a modulator of paclitaxel resistance and stemness, is downregulated in metaplastic breast cancer [published correction appears in Breast Cancer Res Treat. 2018 Jan 5]. Breast Cancer Res Treat. 2017;163:461–74. https://doi.org/10.1007/s10549-017-4202-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rao X, Tang P, Li Y, Fu GX, Chen SZ, Xu XY, et al. CBP/P300 inhibitors mitigate radiation-induced GI Syndrome by promoting intestinal stem cell-mediated crypt regeneration. Int J Radiat Oncol Biol Phys. 2021;110:1210–21. https://doi.org/10.1016/j.ijrobp.2021.01.046

    Article  PubMed  Google Scholar 

  10. Qin X, Chen H, Tu L, Ma Y, Liu N, Zhang HW, et al. Potent inhibition of HIF1α and p300 interaction by a constrained peptide derived from CITED2. J Med Chem. 2021;64:13693–703. https://doi.org/10.1021/acs.jmedchem.1c01043

    Article  CAS  PubMed  Google Scholar 

  11. Mukheem Mudabbir MA, Mundlamuri RC, Mariyappa N, Kumar RA, Velmurugan J, Bhargava GB, et al. P300 in mesial temporal lobe epilepsy and its correlation with cognition—a MEG based prospective case-control study. Epilepsy Behav. 2021;114:107619 https://doi.org/10.1016/j.yebeh.2020.107619

    Article  CAS  PubMed  Google Scholar 

  12. Mastracchio A, Lai C, Digiammarino E, Ready DB, Lasko LM, Bromberg KD, et al. Discovery of a potent and selective covalent p300/CBP inhibitor. ACS Med Chem Lett. 2021;12:726–31. https://doi.org/10.1021/acsmedchemlett.0c00654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lim CK, Efthymios M, Tan W, Autio MI, Tiang Z, Li PY, et al. Dimethyl sulfoxide (DMSO) enhances direct cardiac reprogramming by inhibiting the bromodomain of coactivators CBP/p300. J Mol Cell Cardiol. 2021;160:15–26. https://doi.org/10.1016/j.yjmcc.2021.06.008

    Article  CAS  PubMed  Google Scholar 

  14. Li TY, Sleiman MB, Li H, Gao AW, Mottis A, Bachmann AM, et al. The transcriptional coactivator CBP/p300 is an evolutionarily conserved node that promotes longevity in response to mitochondrial stress. Nat Aging. 2021;1:165–78. https://doi.org/10.1038/s43587-020-00025-z

    Article  PubMed  PubMed Central  Google Scholar 

  15. Spriano F, Gaudio E, Cascione L, Tarantelli C, Melle F, Motta G, et al. Antitumor activity of the dual BET and CBP/EP300 inhibitor NEO2734. Blood Adv. 2020;4:4124–35. https://doi.org/10.1182/bloodadvances.2020001879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ferrazoli N, Donadon C, Rezende A, Skarzynski PH, Sanfins MD. The application of P300-long-latency auditory-evoked potential in Parkinson disease. Int Arch Otorhinolaryngol. 2022;26:e158–e166. https://doi.org/10.1055/s-0040-1722250

    Article  PubMed  Google Scholar 

  17. Luyckx I, Bolar N, Diness BR, Hove HB, Verstraeten A, Loeys BL. Aortic aneurysm: an underestimated serious finding in the EP300 mutation phenotypical spectrum. Eur J Med Genet. 2019;62:96 https://doi.org/10.1016/j.ejmg.2018.06.008

    Article  PubMed  Google Scholar 

  18. Akil A, Ezzikouri S, El Feydi AE, Benazzouz M, Afifi R, Diagne AG, et al. Associations of genetic variants in the transcriptional coactivators EP300 and PCAF with hepatocellular carcinoma. Cancer Epidemiol. 2012;36:e300–5. https://doi.org/10.1016/j.canep.2012.05.011

    Article  CAS  PubMed  Google Scholar 

  19. Alsamri H, Hasasna HE, Baby B, Alneyadi A, Dhaheri YA, Ayoub MA, et al. Carnosol Is a novel inhibitor of p300 acetyltransferase in breast cancer. Front Oncol. 2021;11:664403 https://doi.org/10.3389/fonc.2021.664403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gutiérrez-Salmerón M, García-Martínez JM, Martínez-Useros J, Fernández-Aceñero MJ, Viollet B, Olivier S, et al. Paradoxical activation of AMPK by glucose drives selective EP300 activity in colorectal cancer. PLoS Biol. 2020;18:e3000732 https://doi.org/10.1371/journal.pbio.3000732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tuo L, Xiang J, Pan X, Hu JL, Tang H, Liang L, et al. PCK1 negatively regulates cell cycle progression and hepatoma cell proliferation via the AMPK/p27Kip1 axis. J Exp Clin Cancer Res. 2019;38:50 https://doi.org/10.1186/s13046-019-1029-y

    Article  PubMed  PubMed Central  Google Scholar 

  22. Park SY, Chung YS, Park SY, Kim SH. Role of AMPK in regulation of oxaliplatin-resistant human colorectal cancer. Biomedicines. 2022;10:2690 https://doi.org/10.3390/biomedicines10112690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Steinberg GR, Hardie DG. New insights into activation and function of the AMPK. Nat Rev Mol Cell Biol. 2023;24:255–72. https://doi.org/10.1038/s41580-022-00547-x

    Article  CAS  PubMed  Google Scholar 

  24. ElBaset MA, Salem RS, Ayman F, Ayman N, Shaban N, Afifi SM, et al. Effect of empagliflozin on thioacetamide-induced liver injury in rats: role of AMPK/SIRT-1/HIF-1α pathway in halting liver fibrosis. Antioxidants. 2022;11:2152 https://doi.org/10.3390/antiox11112152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Khamaru P, Chakraborty S, Bhattacharyya A. AMPK activator AICAR in combination with anti-mouse IL10 mAb restores the functionality of intra-tumoral Tfh cells in the 4T1 mouse model. Cell Immunol. 2022;382:104639 https://doi.org/10.1016/j.cellimm.2022.104639

    Article  CAS  PubMed  Google Scholar 

  26. Chen LM, Yang PP, Al Haq AT, Hwang PA, Lai YC, Weng YS, et al. Oligo-Fucoidan supplementation enhances the effect of Olaparib on preventing metastasis and recurrence of triple-negative breast cancer in mice. J Biomed Sci. 2022;29:70 https://doi.org/10.1186/s12929-022-00855-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wei C, Zou H, Xiao T, Liu XY, Wang QQ, Cheng JL, et al. TQFL12, a novel synthetic derivative of TQ, inhibits triple-negative breast cancer metastasis and invasion through activating AMPK/ACC pathway. J Cell Mol Med. 2021;25:10101–10. https://doi.org/10.1111/jcmm.16945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao T, Zhang T, Zhang Y, Zhou B, Lu X. Paclitaxel resistance modulated by the interaction between TRPS1 and AF178030.2 in triple-negative breast cancer. Evid Based Complement Altern Med. 2022;2022:6019975 https://doi.org/10.1155/2022/6019975

    Article  Google Scholar 

  29. Padilla J, Lee BS, Zhai K, Rentz B, Bobo T, Dowling NM, et al. A heme-binding transcription factor BACH1 regulates lactate catabolism suggesting a combined therapy for triple-negative breast cancer. Cells. 2022;11:1177 https://doi.org/10.3390/cells11071177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Welti J, Sharp A, Brooks N, Yuan W, McNair C, Chand SN, et al. Targeting the p300/CBP axis in lethal prostate cancer. Cancer Discov. 2021;11:1118–37. https://doi.org/10.1158/2159-8290.CD-20-0751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu R, Yang H, Chen Z, Zhou KX, Shi QY, Li JY, et al. Design, synthesis and biological evaluation of (R)-5-methylpyrrolidin-2-ones as p300 bromodomain inhibitors with anti-tumor activities in multiple tumor lines. Bioorg Chem. 2022;124:105803 https://doi.org/10.1016/j.bioorg.2022.105803

    Article  CAS  PubMed  Google Scholar 

  32. Li S, Jin J, Daly I, Liu C, Cichocki A. Feature selection method based on Menger curvature and LDA theory for a P300 brain-computer interface. J Neural Eng. 2021; https://doi.org/10.1088/1741-2552/ac42b4

  33. Liu MX, Jin L, Sun SJ, Liu P, Feng X, Cheng ZL, et al. Metabolic reprogramming by PCK1 promotes TCA cataplerosis, oxidative stress and apoptosis in liver cancer cells and suppresses hepatocellular carcinoma. Oncogene. 2018;37:1637–53. https://doi.org/10.1038/s41388-017-0070-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tuo L, Xiang J, Pan X, Gao QZ, Zhang GJ, Yang Y, et al. PCK1 downregulation promotes TXNRD1 expression and hepatoma cell growth via the Nrf2/Keap1 pathway. Front Oncol. 2018;8:611 https://doi.org/10.3389/fonc.2018.00611. Published 2018 Dec 17

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tang Y, Zhang Y, Wang C, Sun ZY, Li LF, Cheng SQ, et al. Overexpression of PCK1 gene antagonizes hepatocellular carcinoma through the activation of gluconeogenesis and suppression of glycolysis pathways. Cell Physiol Biochem. 2018;47:344–55. https://doi.org/10.1159/000489811

    Article  CAS  PubMed  Google Scholar 

  36. Shao F, Bian X, Wang J, Xu DQ, Guo W, Jiang HF, et al. Prognostic Impact of PCK1 protein kinase activity-dependent nuclear SREBP1 activation in non-small-cell lung carcinoma. Front Oncol. 2021;11:561247 https://doi.org/10.3389/fonc.2021.561247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yamaguchi N, Weinberg EM, Nguyen A, Liberti MV, Goodarzi H, Janjigian YY, et al. PCK1 and DHODH drive colorectal cancer liver metastatic colonization and hypoxic growth by promoting nucleotide synthesis. Elife. 2019;8:e52135 https://doi.org/10.7554/eLife.52135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sánchez-Mir L, Soto T, Franco A, Madrid M, Viana RA, Vicente J, et al. Rho1 GTPase and PKC ortholog Pck1 are upstream activators of the cell integrity MAPK pathway in fission yeast. PLoS One. 2014;9:e88020 https://doi.org/10.1371/journal.pone.0088020

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ge Y, Zhang Y, Li R, Chen W, Li Y, Chen G. Berberine regulated Gck, G6pc, Pck1 and Srebp-1c expression and activated AMP-activated protein kinase in primary rat hepatocytes. Int J Biol Sci. 2011;7:673–84. https://doi.org/10.7150/ijbs.7.673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xu D, Wang Z, Xia Y, Shao F, Xia WY, Wei YK, et al. The gluconeogenic enzyme PCK1 phosphorylates INSIG1/2 for lipogenesis. Nature. 2020;580:530–5. https://doi.org/10.1038/s41586-020-2183-2

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Mercado JJ, Gancedo JM. Regulatory regions in the yeast FBP1 and PCK1 genes. FEBS Lett. 1992;311:110–4. https://doi.org/10.1016/0014-5793(92)81379-z

    Article  CAS  PubMed  Google Scholar 

  42. Shi H, Fang R, Li Y, Li LL, Zhang WY, Wang HW, et al. The oncoprotein HBXIP suppresses gluconeogenesis through modulating PCK1 to enhance the growth of hepatoma cells. Cancer Lett. 2016;382:147–56. https://doi.org/10.1016/j.canlet.2016.08.025

    Article  CAS  PubMed  Google Scholar 

  43. Blenman KRM, Marczyk M, Karn T, Qing T, Li XT, Gunasekharan V, et al. Predictive markers of response to neoadjuvant durvalumab with nab-paclitaxel and dose-dense doxorubicin/cyclophosphamide in basal-like triple-negative breast cancer. Clin Cancer Res. 2022;28:2587–97. https://doi.org/10.1158/1078-0432.CCR-21-3215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li J, Xu X, Peng X. NDC80 enhances cisplatin-resistance in triple-negative breast cancer [published correction appears in Arch Med Res. 2023;54(5):102833]. Arch Med Res. 2022;53:378–87. https://doi.org/10.1016/j.arcmed.2022.03.003

    Article  CAS  PubMed  Google Scholar 

  45. Chen Y, Feng X, Yuan Y, Jiang J, Zhang P, Zhang B. Identification of a novel mechanism for reversal of doxorubicin-induced chemotherapy resistance by TXNIP in triple-negative breast cancer via promoting reactive oxygen-mediated DNA damage. Cell Death Dis. 2022;13:338 https://doi.org/10.1038/s41419-022-04783-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nath A, Mitra S, Mistry T, Pal R, Nasare VD. Molecular targets and therapeutics in chemoresistance of triple-negative breast cancer. Med Oncol. 2021;39:14 https://doi.org/10.1007/s12032-021-01610-x

    Article  CAS  PubMed  Google Scholar 

  47. Yu G, Chen W, Li X, Yu L, Xu XY, Ruan Q, et al. TWIST1-EP300 expedites gastric cancer cell resistance to apatinib by activating the expression of COL1A2. Anal Cell Pathol. 2022;2022:5374262 https://doi.org/10.1155/2022/5374262

    Article  CAS  Google Scholar 

  48. Jiang S, Luo Y, Zhan Z, Tang ZM, Zou JR, Ying Y, et al. Amp-activated protein kinase re-sensitizes A549 to paclitaxel via up-regulating solute carrier organic anion transporter family member 1b3 expression. Cell Signal. 2022;91:110215 https://doi.org/10.1016/j.cellsig.2021.110215

    Article  CAS  PubMed  Google Scholar 

  49. Wu CH, Liu FC, Pan CH, Lai MT, Lan SJ, Wu CH, et al. Suppression of cell growth, migration and drug resistance by ethanolic extract of antrodia cinnamomea in human lung cancer A549 cells and C57bl/6j allograft tumor model. Int J Mol Sci. 2018;19:791 https://doi.org/10.3390/ijms19030791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sereni MI, Baldelli E, Gambara G, Ravaggi A, Hodge KA, Alberts DS, et al. Kinase-driven metabolic signalling as a predictor of response to carboplatin-paclitaxel adjuvant treatment in advanced ovarian cancers. Br J Cancer. 2017;117:494–502. https://doi.org/10.1038/bjc.2017.195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

National Natural Science Foundation of China (grant no. 82060530).

Author information

Authors and Affiliations

Authors

Contributions

Peng-Wei Zhao: Performed experimental work, data collection or management, data analysis, and manuscript writing/editing. Jia-Xian Cui: Data collection or management, data analysis, manuscript writing/editing. Xiu-Mei Wang: Conceived and designed.

Corresponding author

Correspondence to Xiu-Mei Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and participation consent

This study was conducted in accordance with the Declaration of Helsinki and approved by the Research Ethics Committee of Inner Mongolia Medical University (NO. YDK2020021025), and informed consent was obtained from all participants. All methods were carried out in accordance with relevant guidelines and regulations.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Consent for publication All authors final approval of the version to be published.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, PW., Cui, JX. & Wang, XM. Upregulation of p300 in paclitaxel-resistant TNBC: implications for cell proliferation via the PCK1/AMPK axis. Pharmacogenomics J 24, 5 (2024). https://doi.org/10.1038/s41397-024-00324-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41397-024-00324-3

Search

Quick links