Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HLA-DQA1*05 and upstream variants of PPARGC1B are associated with infliximab persistence in Japanese Crohn’s disease patients

Abstract

Recently, the HLA-DQA1*05 (rs2097432) genetic variation has been reported to be linked to early infliximab (IFX) treatment failure in the Caucasian Crohn’s disease (CD) population, but that evidence is scarce in the Asian population. This study aimed to investigate the relationship between rs2097432 and the cumulative discontinuation-free time of IFX (IFX persistence) in 189 Japanese biologics-naive CD patients. We also performed a genome-wide association study (GWAS) to discover novel genetic predictors for IFX persistence. The C allele of rs2097432 significantly increased the risk of early discontinuation of IFX [Hazard ratio (HR) = 2.23 and P-value = 0.026]. In GWAS, one locus tagged by rs73277969, located upstream of PPARGC1B which attenuates macrophage-mediated inflammation, reached genome-wide significance (HR = 6.04 and P-value = 7.93E−9). Pathway analysis suggested association of signaling by PDGF and FCGR activation signaling with IFX persistence (P-value = 8.56E−5 and 5.80E−4, respectively).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flowchart of this study design.
Fig. 2: Kaplan–Meier curve of discontinuation of infliximab therapy according to the HLA-DQA1*05 (rs2097432) genotype (T/T vs. T/C or CC).
Fig. 3: Manhattan plot of 5,700,568 single-nucleotide polymorphisms utilizing genome-wide association analysis for the relapse-free survival time.
Fig. 4: Results of genome-wide association analysis of discontinuation-free survival rates of Infliximab therapy.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Baumgart DC, Sandborn WJ. Crohn’s disease. Lancet. 2012;380:1590–605.

    Article  PubMed  Google Scholar 

  2. Vulliemoz M, Brand S, Juillerat P, Mottet C, Ben-Horin S, Michetti P. TNF-alpha blockers in inflammatory bowel diseases: practical recommendations and a user’s guide: an update. Digestion. 2020;101:16–26.

    Article  CAS  PubMed  Google Scholar 

  3. Magro F, Portela F. Management of inflammatory bowel disease with infliximab and other anti-tumor necrosis factor alpha therapies. BioDrugs. 2010;24:3–14.

    Article  CAS  PubMed  Google Scholar 

  4. Lichtenstein GR, Feagan BG, Cohen RD, Salzberg BA, Safdi M, Popp JW Jr, et al. Infliximab for Crohn’s disease: more than 13 years of real-world experience. Inflamm Bowel Dis. 2018;24:490–501.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ben-Horin S, Chowers Y. Review article: loss of response to anti-TNF treatments in Crohn’s disease. Aliment Pharm Ther. 2011;33:987–95.

    Article  CAS  Google Scholar 

  6. Lichtenstein L, Ron Y, Kivity S, Ben-Horin S, Israeli E, Fraser GM, et al. Infliximab-related infusion reactions: systematic review. J Crohns Colitis. 2015;9:806–15.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Vermeire S, Gils A, Accossato P, Lula S, Marren A. Immunogenicity of biologics in inflammatory bowel disease. Ther Adv Gastroenterol. 2018;11:1756283x17750355.

    Article  Google Scholar 

  8. Visuri I, Eriksson C, Olén O, Cao Y, Mårdberg E, Grip O, et al. Predictors of drug survival: a cohort study comparing anti-tumour necrosis factor agents using the Swedish inflammatory bowel disease quality register. Aliment Pharm Ther. 2021;54:931–43.

    Article  CAS  Google Scholar 

  9. Blesl A, Binder L, Högenauer C, Wenzl H, Borenich A, Pregartner G, et al. Limited long-term treatment persistence of first anti-TNF therapy in 538 patients with inflammatory bowel diseases: a 20-year real-world study. Aliment Pharm Ther. 2021;54:667–77.

    Article  CAS  Google Scholar 

  10. Mascheretti S, Hampe J, Croucher PJ, Nikolaus S, Andus T, Schubert S, et al. Response to infliximab treatment in Crohn’s disease is not associated with mutations in the CARD15 (NOD2) gene: an analysis in 534 patients from two multicenter, prospective GCP-level trials. Pharmacogenetics. 2002;12:509–15.

    Article  CAS  PubMed  Google Scholar 

  11. Prieto-Pérez R, Almoguera B, Cabaleiro T, Hakonarson H, Abad-Santos F. Association between genetic polymorphisms and response to anti-TNFs in patients with inflammatory bowel disease. Int J Mol Sci. 2016;17:225.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sazonovs A, Kennedy NA, Moutsianas L, Heap GA, Rice DL, Reppell M, et al. HLA-DQA1*05 carriage associated with development of anti-drug antibodies to infliximab and adalimumab in patients with Crohn’s disease. Gastroenterology. 2020;158:189–99.

    Article  CAS  PubMed  Google Scholar 

  13. Wilson A, Peel C, Wang Q, Pananos AD, Kim RB. HLADQA1*05 genotype predicts anti-drug antibody formation and loss of response during infliximab therapy for inflammatory bowel disease. Aliment Pharm Ther. 2020;51:356–63.

    Article  CAS  Google Scholar 

  14. Yang SK, Hong M, Baek J, Choi H, Zhao W, Jung Y, et al. A common missense variant in NUDT15 confers susceptibility to thiopurine-induced leukopenia. Nat Genet. 2014;46:1017–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kawai Y, Mimori T, Kojima K, Nariai N, Danjoh I, Saito R, et al. Japonica array: improved genotype imputation by designing a population-specific SNP array with 1070 Japanese individuals. J Hum Genet. 2015;60:581–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhao H, Sun Z, Wang J, Huang H, Kocher JP, Wang L. CrossMap: a versatile tool for coordinate conversion between genome assemblies. Bioinformatics. 2014;30:1006–7.

    Article  PubMed  Google Scholar 

  18. Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics. 2010;26:2336–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput Biol. 2015;11:e1004219.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ordás I, Mould DR, Feagan BG, Sandborn WJ. Anti-TNF monoclonal antibodies in inflammatory bowel disease: pharmacokinetics-based dosing paradigms. Clin Pharm Ther. 2012;91:635–46.

    Article  Google Scholar 

  21. Fasanmade AA, Adedokun OJ, Blank M, Zhou H, Davis HM. Pharmacokinetic properties of infliximab in children and adults with Crohn’s disease: a retrospective analysis of data from 2 phase III clinical trials. Clin Ther. 2011;33:946–64.

    Article  CAS  PubMed  Google Scholar 

  22. Xiong Y, Mizuno T, Colman R, Hyams J, Noe JD, Boyle B, et al. Real-world infliximab pharmacokinetic study informs an electronic health record-embedded dashboard to guide precision dosing in children with Crohn’s disease. Clin Pharm Ther. 2021;109:1639–47.

    Article  CAS  Google Scholar 

  23. van Schouwenburg PA, Rispens T, Wolbink GJ. Immunogenicity of anti-TNF biologic therapies for rheumatoid arthritis. Nat Rev Rheumatol. 2013;9:164–72.

    Article  PubMed  Google Scholar 

  24. Colombel JF, Sandborn WJ, Reinisch W, Mantzaris GJ, Kornbluth A, Rachmilewitz D, et al. Infliximab, azathioprine, or combination therapy for Crohn’s disease. N Engl J Med. 2010;362:1383–95.

    Article  CAS  PubMed  Google Scholar 

  25. Colombel JF, Adedokun OJ, Gasink C, Gao LL, Cornillie FJ, D’Haens GR, et al. Combination therapy with infliximab and azathioprine improves infliximab pharmacokinetic features and efficacy: a post hoc analysis. Clin Gastroenterol Hepatol. 2019;17:1525–1532.e1.

    Article  CAS  PubMed  Google Scholar 

  26. Xu J, Pei Y, Lu J, Liang X, Li Y, Wang J, et al. LncRNA SNHG7 alleviates IL-1β-induced osteoarthritis by inhibiting miR-214-5p-mediated PPARGC1B signaling pathways. Int Immunopharmacol. 2021;90:107150.

    Article  CAS  PubMed  Google Scholar 

  27. Wen Y, Hao J, Xiao X, Wang W, Guo X, Lin W, et al. PPARGC1B gene is associated with Kashin-Beck disease in Han Chinese. Funct Integr Genom. 2016;16:459–63.

    Article  CAS  Google Scholar 

  28. Vats D, Mukundan L, Odegaard JI, Zhang L, Smith KL, Morel CR, et al. Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab. 2006;4:13–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bellafante E, Morgano A, Salvatore L, Murzilli S, Di Tullio G, D’Orazio A, et al. PGC-1β promotes enterocyte lifespan and tumorigenesis in the intestine. Proc Natl Acad Sci USA. 2014;111:E4523–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dubois-Camacho K, Diaz-Jimenez D, De la Fuente M, Quera R, Simian D, Martínez M, et al. Inhibition of miR-378a-3p by inflammation enhances IL-33 levels: a novel mechanism of alarmin modulation in ulcerative colitis. Front Immunol. 2019;10:2449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Krzystek-Korpacka M, Neubauer K, Matusiewicz M. Platelet-derived growth factor-BB reflects clinical, inflammatory and angiogenic disease activity and oxidative stress in inflammatory bowel disease. Clin Biochem. 2009;42:1602–9.

    Article  CAS  PubMed  Google Scholar 

  32. Nair DG, Miller KG, Lourenssen SR, Blennerhassett MG. Inflammatory cytokines promote growth of intestinal smooth muscle cells by induced expression of PDGF-Rβ. J Cell Mol Med. 2014;18:444–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Papamichael K, Van Stappen T, Jairath V, Gecse K, Khanna R, D’Haens G, et al. Review article: pharmacological aspects of anti-TNF biosimilars in inflammatory bowel diseases. Aliment Pharm Ther. 2015;42:1158–69.

    Article  CAS  Google Scholar 

  34. Moroi R, Endo K, Kinouchi Y, Shiga H, Kakuta Y, Kuroha M, et al. FCGR3A-158 polymorphism influences the biological response to infliximab in Crohn’s disease through affecting the ADCC activity. Immunogenetics. 2013;65:265–71.

    Article  CAS  PubMed  Google Scholar 

  35. Tracey D, Klareskog L, Sasso EH, Salfeld JG, Tak PP. Tumor necrosis factor antagonist mechanisms of action: a comprehensive review. Pharm Ther. 2008;117:244–79.

    Article  CAS  Google Scholar 

  36. Lee YH, Bae SC. Associations between PTPRC rs10919563 A/G and FCGR2A R131H polymorphisms and responsiveness to TNF blockers in rheumatoid arthritis: a meta-analysis. Rheumatol Int. 2016;36:837–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers JP15H04805. This work was supported (in part) by the Tohoku Medical Megabank Project (Special Account for reconstruction from the Great East Japan Earthquake). Part of computational resources were provided by the ToMMo supercomputer system. We would like to thank past and present members of the IBD group for fruitful discussions and scientific contributions.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

YKakuta, FS, TN, MN and YKinouchi designed the study. FS, TN, YKawai, TK, NCBN Controls WGS Consortium and Y.Kakuta acquired data. FS, TN, YS, RM, HS and YKakuta recruited patients. FS, TN, YKakuta, YKawai and MN analyzed data. FS, TN, YKakuta, YKawai and AM drafted the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Takeo Naito.

Ethics declarations

Competing interests

YKakuta received research grants from AbbVie Inc., Mitsubishi Tanabe Pharma Corporation, EA Pharma Co. Ltd., JIMRO Co., Mochida Pharmaceutical Co., Ltd., Nippon Kayaku Co. Ltd., Daiichi Sankyo Co. Ltd, Kyowa Kirin Co. Ltd., and Janssen Pharmaceutical K.K. MN received research grants from Toshiba Corporation. AM received research grants from Takeda Pharmaceutical Co. Ltd., AbbVie Inc., Mitsubishi Tanabe Pharma Corporation, EA pharma Co. Ltd., JIMRO Co. Ltd., Mochida Pharmaceutical Co. Ltd., and Zeria Pharmaceutical Co. Ltd.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimoda, F., Naito, T., Kakuta, Y. et al. HLA-DQA1*05 and upstream variants of PPARGC1B are associated with infliximab persistence in Japanese Crohn’s disease patients. Pharmacogenomics J 23, 141–148 (2023). https://doi.org/10.1038/s41397-023-00312-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-023-00312-z

Search

Quick links