Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification and cultivation of anaerobic bacterial scavengers of dead cells

Abstract

The cycle of life and death and Earth’s carbon cycle(s) are intimately linked, yet how bacterial cells, one of the largest pools of biomass on Earth, are recycled back into the carbon cycle remains enigmatic. In particular, no bacteria capable of scavenging dead cells in oxygen-depleted environments have been reported thus far. In this study, we discover the first anaerobes that scavenge dead cells and the two isolated strains use distinct strategies. Based on live-cell imaging, transmission electron microscopy, and hydrolytic enzyme assays, one strain (designated CYCD) relied on cell-to-cell contact and cell invagination for degrading dead food bacteria where as the other strain (MGCD) degraded dead food bacteria via excretion of lytic extracellular enzymes. Both strains could degrade dead cells of differing taxonomy (bacteria and archaea) and differing extents of cell damage, including those without artificially inflicted physical damage. In addition, both depended on symbiotic metabolic interactions for maximizing cell degradation, representing the first cultured syntrophic Bacteroidota. We collectively revealed multiple symbiotic bacterial decomposition routes of dead prokaryotic cells, providing novel insight into the last step of the carbon cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Plaque formation by anaerobic dead cell scavengers.
Fig. 2: Degradation of dead bacterial cells by strains CYCD and MGCD.
Fig. 3: Growth of strains CYCD and MGCD on autoclaved E. coli cells.
Fig. 4: Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images of degrader of dead cells.
Fig. 5: Degradation of protein by strains CYCD with M. hungatei.

Similar content being viewed by others

Data availability

The genome sequences and annotation data of strain CYCD are available in National Center for Biotechnology Information (NCBI) BioProject under accession number PRJDB15250.

References

  1. Bar-On YM, Phillips R, Milo R. The biomass distribution on Earth. Proc Natl Acad Sci USA. 2018;115:6506–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ogawa H, Amagai Y, Koike I, Kaiser K, Benner R. Production of refractory dissolved organic matter by bacteria. Science. 2001;292:917–20.

    Article  CAS  PubMed  Google Scholar 

  3. Liang C, Amelung W, Lehmann J, Kästner M. Quantitative assessment of microbial necromass contribution to soil organic matter. Glob Chang Biol 2019;25:3578–90.

    Article  PubMed  Google Scholar 

  4. Camenzind T, Mason-Jones K, Mansour I, Rillig MC, Lehmann J. Formation of necromass-derived soil organic carbon determined by microbial death pathways. Nat Geosci. 2023;16:115–22.

    Article  CAS  Google Scholar 

  5. Tam L, Kevan PG, Trevors JT. Viable bacterial biomass and functional diversity in fresh and marine waters in the Canadian Arctic. Polar Biol. 2003;26:287–94.

    Article  Google Scholar 

  6. Miwa T, Takimoto Y, Hatamoto M, Kuratate D, Watari T, Yamaguchi T. Role of live cell colonization in the biofilm formation process in membrane bioreactors treating actual sewage under low organic loading rate conditions. Appl Microbiol Biotechnol. 2021;105:1721–1729.

    Article  CAS  PubMed  Google Scholar 

  7. Lee J, Kim HS, Jo HY, Kwon MJ. Revisiting soil bacterial counting methods: optimal soil storage and pretreatment methods and comparison of culture-dependent and-independent methods. PloS One. 2021;16:e0246142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Apostel C, Herschbach J, Bore EK, Spielvogel S, Kuzyakov Y, Dippold MA. Food for microorganisms: position-specific 13C labeling and 13C-PLFA analysis reveals preferences for sorbed or necromass C. Geoderma. 2018;312:86–94.

    Article  CAS  Google Scholar 

  9. Arend KI, Schmidt JJ, Bentler T, Lüchtefeld C, Eggerichs D, Hexamer HM, et al. Myxococcus xanthus predation of Gram-positive or Gram-negative bacteria is mediated by different bacteriolytic mechanisms. Appl Environ Microbiol. 2021;87:e02382–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tamaki H, Hanada S, Kamagata Y, Nakamura K, Nomura N, Nakano K, et al. Flavobacterium limicola sp. nov., a psychrophilic, organic-polymer-degrading bacterium isolated from freshwater sediments. Int J Syst Evol Microbiol. 2003;53:519–26.

    Article  CAS  PubMed  Google Scholar 

  11. Ferrier-Pages C, Rassoulzadegan F. N remineralization in planktonic protozoa. Limnol Oceanogr. 1994;39:411–419.

    Article  Google Scholar 

  12. Shinzato N, Watanabe I, Meng XY, Sekiguchi Y, Tamaki H, Matsui T, et al. Phylogenetic analysis and fluorescence in situ hybridization detection of archaeal and bacterial endosymbionts in the anaerobic ciliate Trimyema compressum. Microb Ecol. 2007;54:627–36.

    Article  PubMed  Google Scholar 

  13. Hirakata Y, Hatamoto M, Oshiki M, Watari T, Araki N, Yamaguchi T. Food selectivity of anaerobic protists and direct evidence for methane production using carbon from prey bacteria by endosymbiotic methanogen. ISME J. 2020;14:1873–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Massana R, Pedrós-Alió C. Role of anaerobic ciliates in planktonic food webs: abundance, feeding, and impact on bacteria in the field. Appl Environ Microbiol. 1994;60:1325–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Müller AL, Pelikan C, De Rezende JR, Wasmund K, Putz M, Glombitza C, et al. Bacterial interactions during sequential degradation of cyanobacterial necromass in a sulfidic arctic marine sediment. Environ Microbiol. 2018;20:2927–40.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dong X, Greening C, Brüls T, Conrad R, Guo K, Blaskowski S, et al. Fermentative Spirochaetes mediate necromass recycling in anoxic hydrocarbon-contaminated habitats. ISME J. 2018;12:2039–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Geesink P, Taubert M, Jehmlich N, von Bergen M, Küsel K. Bacterial necromass is rapidly metabolized by heterotrophic bacteria and supports multiple trophic levels of the groundwater microbiome. Microbiol Spectr. 2022;10:e00437–22.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nobu MK, Narihiro T, Mei R, Kamagata Y, Lee PK, Lee PH, et al. Catabolism and interactions of uncultured organisms shaped by eco-thermodynamics in methanogenic bioprocesses. Microbiome. 2020;8:111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sun L, Toyonaga M, Ohashi A, Matsuura N, Tourlousse DM, Meng XY, et al. Isolation and characterization of Flexilinea flocculi gen. nov., sp. nov., a filamentous, anaerobic bacterium belonging to the class Anaerolineae in the phylum Chloroflexi. Int J Syst Evol Microbiol. 2016;66:988–96.

    Article  CAS  PubMed  Google Scholar 

  20. Katayama T, Nobu MK, Kusada H, Meng XY, Hosogi N, Uematsu K, et al. Isolation of a member of the candidate phylum ‘Atribacteria’reveals a unique cell membrane structure. Nat Commun. 2020;11:6381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stams AJ, Plugge CM. Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol. 2009;7:568–77.

    Article  CAS  PubMed  Google Scholar 

  22. Marquez UL, Lajolo FM. Composition and digestibility of albumin, globulins, and glutelins from Phaseolus vulgaris. J Agric Food Chem. 1981;29:1068–74.

    Article  CAS  PubMed  Google Scholar 

  23. Kato Y, Watanabe K, Nakamura R, Sato Y. Effect of preheat treatment on tryptic hydrolysis of Maillard-reacted ovalbumin. J Agric Food Chem. 1983;31:437–41.

    Article  CAS  PubMed  Google Scholar 

  24. Semino GA, Cerletti P. Effect of preliminary thermal treatment on the digestion by trypsin of lupin seed protein. J Agric Food Chem. 1987;35:656–60.

    Article  CAS  Google Scholar 

  25. Abram F, Enright AM, O’reilly J, Botting CH, Collins G, O’flaherty V. A metaproteomic approach gives functional insights into anaerobic digestion. J Appl Microbiol. 2011;110:1550–60.

    Article  CAS  PubMed  Google Scholar 

  26. Yamane K, Hattori Y, Ohtagaki H, Fujiwara K. Microbial diversity with dominance of 16S rRNA gene sequences with high GC contents at 74 and 98 ˚C subsurface crude oil deposits in Japan. FEMS Microbiol Ecol. 2011;76:220–35.

    Article  CAS  PubMed  Google Scholar 

  27. Cheng TW, Chang YH, Tang SL, Tseng CH, Chiang PW, Chang KT, et al. Metabolic stratification driven by surface and subsurface interactions in a terrestrial mud volcano. ISME J. 2012;6:2280–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Blanco Y, Rivas LA, Garcia-Moyano A, Aguirre J, Cruz-Gil P, Palacin A, et al. Deciphering the prokaryotic community and metabolisms in South African deep-mine biofilms through antibody microarrays and graph theory. PLoS One. 2014;9:e114180.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hirakata Y, Oshiki M, Kuroda K, Hatamoto M, Kubota K, Yamaguchi T, et al. Effects of predation by protists on prokaryotic community function, structure, and diversity in anaerobic granular sludge. Microbes Environ. 2016;31:279–87.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Key KC, Sublette KL, Duncan K, Mackay DM, Scow KM, Ogles D. Using DNA-stable isotope probing to identify MTBE- and TBA- degrading microorganisms in contaminated groundwater. Ground Water Monit Remediat. 2013;33:57–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Khomyakova MA, Merkel AY, Slobodkin AI. Perlabentimonas gracilis gen. nov., sp. nov., a gliding aerotolerant anaerobe of the order Bacteroidales, isolated from a terrestrial mud volcano. Syst Appl Microbiol 2021;44:126245.

    Article  CAS  PubMed  Google Scholar 

  32. Mei R, Nobu MK, Narihiro T, Kuroda K, Sierra JM, Wu Z, et al. Operation-driven heterogeneity and overlooked feed-associated populations in global anaerobic digester microbiome. Water Res. 2017;124:77–84.

    Article  CAS  PubMed  Google Scholar 

  33. Stepnaya OA, Tsfasman IM, Logvina IA, Ryazanova LP, Muranova TA, Kulaev IS. Isolation and characterization of a new extracellular bacteriolytic endopeptidase of Lysobacter sp. XL1. Biochemistry. 2005;70:1031–1037.

    CAS  PubMed  Google Scholar 

  34. Shiratori T, Suzuki S, Kakizawa Y, Ishida KI. Phagocytosis-like cell engulfment by a planctomycete bacterium. Nat Commun. 2019;10:5529.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dwidar M, Monnappa AK, Mitchell RJ. The dual probiotic and antibiotic nature of Bdellovibrio bacteriovorus. BMB Rep. 2012;45:71–78.

    Article  CAS  PubMed  Google Scholar 

  36. Herencias C, Salgado-Briegas S, Prieto MA, Nogales J. Providing new insights on the biphasic lifestyle of the predatory bacterium Bdellovibrio bacteriovorus through genome-scale metabolic modeling. PLoS Comput Biol. 2020;16:e1007646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ganuza E, Sellers CE, Bennett BW, Lyons EM, Carney LT. A novel treatment protects Chlorella at commercial scale from the predatory bacterium Vampirovibrio chlorellavorus. Front Microbiol. 2016;7:848.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Martin WF, Tielens AG, Mentel M, Garg SG, Gould SB. The physiology of phagocytosis in the context of mitochondrial origin. Microbiol Mol Biol Rev. 2017;81:10–1128.

    Article  Google Scholar 

  39. O’Connor CM, Adams JU, Fairman J. Essentials of cell biology. Cambridge, MA: NPG Education; 2010.

  40. Madej M, White JB, Nowakowska Z, Rawson S, Scavenius C, Enghild JJ, et al. Structural and functional insights into oligopeptide acquisition by the RagAB transporter from Porphyromonas gingivalis. Nat Microbiol. 2020;5:1016–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ratliff AC, Buchanan SK, Celia H. Ton motor complexes. Curr Opin Struct Biol. 2021;67:95–100.

    Article  CAS  PubMed  Google Scholar 

  42. Cosgriff AJ, Brasier G, Pi J, Dogovski C, Sarsero JP, Pittard AJ. A study of AroP-PheP chimeric proteins and identification of a residue involved in tryptophan transport. J Bacteriol. 2000;182:2207–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schneider F, Krämer R, Burkovski A. Identification and characterization of the main β-alanine uptake system in Escherichia coli. Appl Microbiol Biotechnol. 2004;65:576–82.

    Article  CAS  PubMed  Google Scholar 

  44. Monod J. The growth of bacterial cultures. Annu Rev Microbiol. 1949;3:371–94.

    Article  CAS  Google Scholar 

  45. Perrin E, Ghini V, Giovannini M, Di Patti F, Cardazzo B, Carraro L, et al. Diauxie and co-utilization of carbon sources can coexist during bacterial growth in nutritionally complex environments. Nat Commun. 2020;11:3135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Prüss BM, Nelms JM, Park C, Wolfe AJ. Mutations in NADH: ubiquinone oxidoreductase of Escherichia coli affect growth on mixed amino acids. J Bacteriol. 1994;176:2143–50.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Harder W, Dijkhuizen L. Strategies of mixed substrate utilization in microorganisms. Philos. Trans R Soc Lond Ser B. 1982;297:459–80.

    Article  CAS  Google Scholar 

  48. Lendenmann URS, Snozzi M, Egli T. Kinetics of the simultaneous utilization of sugar mixtures by Escherichia coli in continuous culture. Appl Environ Microbiol. 1996;62:1493–1499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sivakanesan R, Dawes EA. Anaerobic glucose and serine metabolism in Staphylococcus epidermidis. Microbiology. 1980;118:143–57.

    Article  CAS  Google Scholar 

  50. Buckel W, Barker H. Two pathways of glutamate fermentation by anaerobic bacteria. J Bacteriol. 1974;117:1248–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sasaki K, Morita M, Sasaki D, Nagaoka J, Matsumoto N, Ohmura N, et al. Syntrophic degradation of proteinaceous materials by the thermophilic strains Coprothermobacter proteolyticus and Methanothermobacter thermautotrophicus. J Biosci Bioeng. 2011;112:469–72.

    Article  CAS  PubMed  Google Scholar 

  52. Ben Hania W, Joseph M, Bunk B, Spröer C, Klenk HP, Fardeau ML, et al. Characterization of the first cultured representative of a Bacteroidetes clade specialized on the scavenging of cyanobacteria. Environ Microbiol. 2017;19:1134–48.

    Article  PubMed  Google Scholar 

  53. Kubota K, Hayashi M, Matsunaga K, Iguchi A, Ohashi A, Li YY, et al. Microbial community composition of a down-flow hanging sponge (DHS) reactor combined with an up-flow anaerobic sludge blanket (UASB) reactor for the treatment of municipal sewage. Bioresour Technol. 2014;151:144–50.

    Article  CAS  PubMed  Google Scholar 

  54. Kunisue S, Mita I, Waki F. Relationship between subsurface geology and productivity of natural gas and iodine in the Mobara gas field, Boso Peninsula, central Japan. J Jpn Assoc Pet Technol. 2002;67:83–96.

    Article  CAS  Google Scholar 

  55. Katayama T, Kamagata Y. Cultivation of Methanogens. In: McGenity TJ, Timmis KN, Nogales B (eds). Hydrocarbon and lipid microbiology protocols, isolation and cultivation. Berlin: Springer; 2016. pp 177–95.

  56. Hatamoto M, Kaneshige M, Nakamura A, Yamaguchi T. Bacteroides luti sp. nov., an anaerobic, cellulolytic and xylanolytic bacterium isolated from methanogenic sludge. Int J Syst Evol Microbiol. 2014;64:1770–1774.

    Article  CAS  PubMed  Google Scholar 

  57. Su XL, Tian Q, Zhang J, Yuan XZ, Shi XS, Guo RB, et al. Acetobacteroides hydrogenigenes gen. nov., sp. nov., an anaerobic hydrogen-producing bacterium in the family Rikenellaceae isolated from a reed swamp. Int J Syst Evol Microbiol. 2014;64:2986–91.

    Article  CAS  PubMed  Google Scholar 

  58. Podosokorskaya OA, Kochetkova TV, Novikov AA, Toshchakov SV, Elcheninov AG. Kublanov IV. Tenuifilum thalassicum gen. nov., sp. nov., a novel moderate thermophilic anaerobic bacterium from a Kunashir Island shallow hot spring representing a new family Tenuifilaceae fam. nov. in the class Bacteroidia. Syst Appl Microbiol. 2020;43:126126.

    Article  CAS  PubMed  Google Scholar 

  59. Guo X, Xia X, Tang R, Wang K. Real-time PCR quantification of the predominant bacterial divisions in the distal gut of Meishan and Landrace pigs. Anaerobe. 2008;14:224–228.

    Article  CAS  PubMed  Google Scholar 

  60. Kimura H, Arai S. Oligopeptide mixtures produced from soy protein by enzymatic modification and their nutritional qualities evaluated by feeding tests with normal and malnourished rats. J Nutr Sci Vitaminol. 1988;34:375–86.

    Article  CAS  PubMed  Google Scholar 

  61. Morinaga K, Kusada H, Sakamoto S, Murakami T, Toyoda A, Mori H, et al. Granulimonas faecalis gen. nov., sp. nov., and Leptogranulimonas caecicola gen. nov., sp. nov., novel lactate-producing Atopobiaceae bacteria isolated from mouse intestines, and an emended description of the family Atopobiaceae. Int J Syst Evol Microbiol. 2022;72:005596.

    Article  CAS  Google Scholar 

  62. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;13:e1005595.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PloS One. 2014;9:e112963.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–2069.

    Article  CAS  PubMed  Google Scholar 

  65. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016;44:D286–D293.

    Article  CAS  PubMed  Google Scholar 

  66. Marchler-Bauer A, Bryant SH. CD-Search: protein domain annotations on the fly. Nucleic Acids Res. 2004;32:W327–W331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–W101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rawlings ND, Barrett AJ, Finn R. Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 2016;44(D1):D343–D350.

    Article  CAS  PubMed  Google Scholar 

  69. Krogh A, Larsson B, Von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305:567–80.

    Article  CAS  PubMed  Google Scholar 

  70. Teufel F, Almagro Armenteros JJ, Johansen AR, Gíslason MH, Pihl SI, Tsirigos KD, et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat Biotechnol. 2022;40:1023–1025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Boutet E, Lieberherr D, Tognolli M, Schneider M, Bairoch A. UniProtKB/Swiss-Prot. In: Edwards D (ed). Plant bioinformatics: methods and protocols. Totowa: Humana Press; 2007. pp 89–112.

  72. Lima T, Auchincloss AH, Coudert E, Keller G, Michoud K, Rivoire C, et al. HAMAP: a database of completely sequenced microbial proteome sets and manually curated microbial protein families in UniProtKB/Swiss-Prot. Nucleic Acids Res. 2009;37:D471–D478.

    Article  CAS  PubMed  Google Scholar 

  73. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i890.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–1973.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lemoine F, Domelevo Entfellner JB, Wilkinson E, Correia D, Dávila Felipe M, De, et al. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature. 2018;556:452–456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Criscuolo A, Gribaldo S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol. 2010;10:210.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol. 2008;25:1307–20.

    Article  CAS  PubMed  Google Scholar 

  80. Nobu MK, Nakai R, Tamazawa S, Mori H, Toyoda A, Ijiri A, et al. Unique H2-utilizing lithotrophy in serpentinite-hosted systems. ISME J. 2023;17:95–104.

    Article  CAS  PubMed  Google Scholar 

  81. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinforma. 2009;10:421.

    Article  Google Scholar 

  82. UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47:D506–D515.

  83. Nagano K, Murakami Y, Nishikawa K, Sakakibara J, Shimozato K, Yoshimura F. Characterization of RagA and RagB in Porphyromonas gingivalis: study using gene-deletion mutants. J Med Microbiol. 2007;56:1536–48.

    Article  CAS  PubMed  Google Scholar 

  84. Kappelmann L, Krüger K, Hehemann JH, Harder J, Markert S, Unfried F, et al. Polysaccharide utilization loci of North Sea Flavobacteriia as basis for using SusC/D-protein expression for predicting major phytoplankton glycans. ISME J. 2019;13:76–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported financially by Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science 18H03367 to MKN and 22K18046 to YH. We thank Dr. Bernhard Schink and Dr. Aharon Oren for their help with the nomenclature of the species.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: YH, MKN; Methodology: YH, RM, MKN; Investigation: YH, KM, XM; Resources: YH, MH, TW, TY, TK, MKN; Visualization: YH, MKN; Writing – original draft: YH, MKN; Writing – review & editing: YH, RM, KM, TK, HT, XM, TW, TY, MH, MKN. All authors have read and approved the manuscript submission.

Corresponding authors

Correspondence to Yuga Hirakata or Masaru K. Nobu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirakata, Y., Mei, R., Morinaga, K. et al. Identification and cultivation of anaerobic bacterial scavengers of dead cells. ISME J 17, 2279–2289 (2023). https://doi.org/10.1038/s41396-023-01538-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41396-023-01538-2

Search

Quick links