Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Periconceptional maternal folate supplementation impacts a diverse range of congenital malformations

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Wallingford, J. B. We are all developmental biologists. Dev. Cell 50, 132–137 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Thiersch, J. B. Therapeutic abortions with a folic acid antagonist, 4-aminopteroylglutamic acid (4-amino P.G.A) administered by the oral route. Am. J. Obstet. Gynecol. 63, 1298–1304 (1952).

    Article  CAS  PubMed  Google Scholar 

  3. Thiersch, J. B. & Philips, F. S. Effect of 4-amino-pteroylglutamic acid (aminopterin) on early pregnancy. Proc. Soc. Exp. Biol. Med. 74, 204–208 (1950).

    Article  CAS  PubMed  Google Scholar 

  4. Warkany, J., Beaudry, P. H. & Hornstein, S. Attempted abortion with aminopterin (4-amino-pteroylglutamic acid); malformations of the child. AMA J. Dis. Child. 97, 274–281 (1959).

    Article  CAS  PubMed  Google Scholar 

  5. Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. MRC Vitamin Study Research Group. Lancet 338, 131–137 (1991).

  6. Berry, R. J. et al. Prevention of neural-tube defects with folic acid in China. China-U.S. Collaborative Project for Neural Tube Defect Prevention. N. Eng. J. Med. 341, 1485–1490 (1999).

    Article  CAS  Google Scholar 

  7. De Wals, P. et al. Reduction in neural-tube defects after folic acid fortification in Canada. N. Eng. J. Med. 357, 135–142 (2007).

    Article  Google Scholar 

  8. Czeizel, A. E. & Dudás, I. Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N. Eng. J. Med. 327, 1832–1835 (1992).

    Article  CAS  Google Scholar 

  9. Obican, S. G., Finnell, R. H., Mills, J. L., Shaw, G. M. & Scialli, A. R. Folic acid in early pregnancy: a public health success story. FASEB J. 24, 4167–4174 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xu, A. et al. A meta-analysis of the relationship between maternal folic acid supplementation and the risk of congenital heart defects. Int. Heart J. 57, 725–728 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Yu, D. et al. Maternal socioeconomic status and the risk of congenital heart defects in offspring: a meta-analysis of 33 studies. PLoS ONE 9, e111056 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  12. Feng, Y. et al. Maternal folic acid supplementation and the risk of congenital heart defects in offspring: a meta-analysis of epidemiological observational studies. Sci. Rep. 5, 8506 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Qu, Y. et al. First-trimester maternal folic acid supplementation modifies the effects of risk factors exposures on congenital heart disease in offspring. Life 21, 724 (2021).

    Article  ADS  Google Scholar 

  14. Zhou, Y. et al. Folate intake, markers of folate status and oral clefts: an updated set of systematic reviews and meta-analyses. Birth Defects Res. 112, 1699–1719 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Fitriasari, S. & Trainor, P. A. Gene-environment interactions in the pathogenesis of common craniofacial anomalies. Curr. Top. Dev. Biol. 152, 139–168 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Millacura, N., Pardo, R., Cifuentes, L. & Suazo, J. Effects of folic acid fortification on orofacial clefts prevalence: a meta-analysis. Public Health Nutr. 20, 2260–2268 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yazdy, M. M., Honein, M. A. & Xing, J. Reduction in orofacial clefts following folic acid fortification of the U.S. grain supply. Birth Defects Res. A Clin. Mol. Teratol. 79, 16–23 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Haaland, Ø. A. et al. A genome-wide search for gene-environment effects in isolated cleft lip with or without cleft palate triads points to an interaction between maternal periconceptional vitamin use and variants in ESRRG. Front. Genet. 26, 60 (2018).

    Article  Google Scholar 

  19. Su, J. et al. Is the tradeoff between folic acid or/and multivitamin supplementation against birth defects in early pregnancy reconsidered? Evidence based on a Chinese Birth Cohort Study. Nutrients 15, 279 (2023).

  20. Yu, X. et al. Hypospadias prevalence and trends in international birth defect surveillance systems, 1980-2010. Eur. Urol. 76, 482–490 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Stadler, H. S. et al. Meeting report on the NIDDK/AUA Workshop on Congenital Anomalies of External Genitalia: challenges and opportunities for translational research. J. Pediatr. Urol. 16, 791–804 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Matsushita, S. et al. Regulation of masculinization: androgen signalling for external genitalia development. Nat. Rev. Urol. 15, 358–368 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Chen, Z. et al. How far should we explore hypospadias? Next-generation sequencing applied to a large cohort of hypospadiac patients. Eur. Urol. 79, 507–515 (2021).

    Article  Google Scholar 

  24. Carmichael, S. L., Shaw, G. M. & Lammer, E. J. Environmental and genetic contributors to hypospadias: a review of the epidemiologic evidence. Birth Defects Res. A Clin. Mol. Teratol. 94, 499–510 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schnack, T. H. et al. Familial aggregation of hypospadias: a cohort study. Am. J. Epidemiol. 167, 251–256 (2008).

    Article  PubMed  Google Scholar 

  26. Stoll, C., Alembik, Y., Roth, M. P. & Dott, B. Genetic and environmental factors in hypospadias. J. Med. Genet. 27, 559–563 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li, J. et al. Propensity score analysis of the association between maternal exposure to second-hand tobacco smoke and birth defects in Northwestern China. J. Dev. Orig. Health Dis. 13, 626–633 (2022).

    Article  PubMed  Google Scholar 

  28. Chesnaye, N. C. et al. An introduction to inverse probability of treatment weighting in observational research. Clin. Kidney J. 15, 14–20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hernán, M. A. & Robins, J. M. Estimating causal effects from epidemiological data. J. Epidemiol. Community Health 60, 578–586 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard H. Finnell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Finnell, R.H., Zhu, H. Periconceptional maternal folate supplementation impacts a diverse range of congenital malformations. Pediatr Res 95, 880–882 (2024). https://doi.org/10.1038/s41390-023-02935-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-023-02935-1

Search

Quick links