Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Clinical Research Article
  • Published:

Influence of physical fitness and weight status on autonomic cardiac modulation in children

Abstract

Background

This study provides reference values for cardiovascular modulation at rest, during maximal exercise test and recovery after exercise in Caucasian children according to weight status and cardiorespiratory fitness (CRF) level. Additionally, the current study analyzed several correlations between autonomic cardiovascular modulation, cardiorespiratory performance and cardiometabolic risk. The principal goal of this study was to analyze cardiac function at rest, during maximum exercise, and during the recovery phase in children grouped according to weight status and CRF level.

Methods

One hundred and fifty-two healthy children (78 girls) 10–16 years of age were divided into three groups: soccer and basketball players (SBG), endurance group (EG), and sedentary people with overweight and obesity (OOG). A cardiac RR interval monitor recorded the cardiac data and specific software analyzed the cardiac autonomic response through heart rate (HR) and HR variability. The study analyzed resting HR (RHR), HRpeak, and HR recovery (HRR).

Results

OOG showed significant poorer performance in the Léger test lower V̇O2 max and higher values of blood pressure at rest and post-exercise than sport groups. The EG presented the best results in CRF and cardiometabolic risk (CMR) in relation to SBG and OOG. The OOG showed higher percentage of HR values, compatible with an unhealthy cardiovascular autonomic modulation than the sport groups, with significant differences in bradycardia, HR reserve, and HRR 5 min.

Conclusions

Aerobic performance, vagal activity, blood pressure, chronotropic competence, and HRR have significant associations with CMR parameters.

Impact

  • The current study presents reference values of autonomic cardiac function in Caucasian children according to weight status and cardiorespiratory fitness level.

  • Aerobic performance, vagal activity, blood pressure, chronotropic competence, and heart rate during the recovery period after exercise have significant associations with cardiometabolic risk parameters.

  • Children with overweight and obesity show signs of autonomic dysfunction reflected as low cardiac vagal activity and poor chronotropic competence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Heart rate profile at rest, during exercise, and during recovery time.
Fig. 2: Weight status of participants.
Fig. 3: Percentage of children within each heart rate (HR) references (at rest, HR reserve and at recovery time) associated with a healthy cardiovascular system.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Ahn, S. & Fedewa, A. L. A meta-analysis of the relationship between children’s physical activity and mental health. J. Pediatr. Psychol. 36, 385–397 (2011).

    Article  PubMed  Google Scholar 

  2. Martínez-Gómez, D. et al. Sedentary behavior, adiposity, and cardiovascular risk factors in adolescents. The AFINOS study. Rev Española Cardiol. (Engl. Ed.) 63, 277–285 (2010).

    Article  Google Scholar 

  3. Lee, E. Y. & Yoon, K.-H. Epidemic obesity in children and adolescents: risk factors and prevention. Front. Med. 12, 658–666 (2018).

    Article  PubMed  Google Scholar 

  4. World Health Organization. Levels and Trends in Child Malnutrition: UNICEF/WHO/The World Bank Group Joint Child Malnutrition Estimates: Key Findings of the 2021 Edition (WHO, 2021).

  5. Carnethon, M. R., Jacobs, D. R. Jr, Sidney, S. & Liu, K. Influence of autonomic nervous system dysfunction on the development of type 2 diabetes: the CARDIA study. Diabetes Care 26, 3035–3041 (2003).

    Article  PubMed  Google Scholar 

  6. Soares‐Miranda, L. et al. Metabolic syndrome, physical activity and cardiac autonomic function. Diabetes Metab. Res. Rev. 28, 363–369 (2012).

    Article  PubMed  Google Scholar 

  7. Shah, A. S. et al. Severe obesity in adolescents and young adults is associated with subclinical cardiac and vascular changes. J. Clin. Endocrinol. Metab. 100, 2751–2757 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bongers-Karmaoui, M. N., Jaddoe, V. W. V., Roest, A. A. W. & Gaillard, R. The cardiovascular stress response as early life marker of cardiovascular health: applications in population-based pediatric studies—a narrative review. Pediatr. Cardiol. 41, 1739–1755 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Billman, G. E., Sacha, J., Werner, B., Jelen, P. J. & Gąsior, J. S. Editorial: Heart rate variability and other autonomic markers in children and adolescents. Front. Physiol. 11, 1265 (2019).

    Article  Google Scholar 

  10. Evans, C. A., Selvadurai, H., Baur, L. A. & Waters, K. A. Effects of obstructive sleep apnea and obesity on exercise function in children. Sleep 37, 1103–1110 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Metwalley, K. A., Hamed, S. A. & Farghaly, H. S. Cardiac autonomic function in children with type 1 diabetes. Eur. J. Pediatr. 177, 805–813 (2018).

    Article  PubMed  Google Scholar 

  12. Soares-Miranda, L. et al. Vigorous physical activity and vagal modulation in young adults. Eur. J. Prev. Cardiol. 16, 705–711 (2009).

    Article  Google Scholar 

  13. Nascimento, R. D. et al. Sedentary lifestyle in adolescents is associated with impairment in autonomic cardiovascular modulation. Rev. Bras. Med. Esport. 25, 191–195 (2019).

    Article  Google Scholar 

  14. Farah, B. Q. et al. Association between sedentary recreational time and cardiac autonomic modulation in adolescent boys: cross-sectional study. Sport Sci. Health 16, 677–683 https://doi.org/10.1007/s11332-020-00641-7 (2020).

  15. Latorre-Román, P.Á., Navarro-Martínez, A. V. & García-Pinillos, F. The effectiveness of an indoor intermittent training program for improving lung function, physical capacity, body composition and quality of life in children with asthma. J. Asthma 51, 544–551 (2014).

  16. Zaqout, M. et al. Determinant factors of physical fitness in European children. Int. J. Public Health 61, 573–582 (2016).

    Article  PubMed  Google Scholar 

  17. Álvarez, C. et al. Associations of cardiorespiratory fitness and obesity parameters with blood pressure: fitness and fatness in youth Latin-American ethnic minority. Ethn. Health 27, 1058–1074 (2022).

  18. Buchan, D. S., Knox, G., Jones, A. M., Tomkinson, G. R. & Baker, J. S. Utility of international normative 20 m shuttle run values for identifying youth at increased cardiometabolic risk. J. Sports Sci. 37, 507–514 (2019).

    Article  PubMed  Google Scholar 

  19. Freeman, J. V., Dewey, F. E., Hadley, D. M., Myers, J. & Froelicher, V. F. Autonomic nervous system interaction with the cardiovascular system during exercise. Prog. Cardiovasc. Dis. 48, 342–362 (2006).

    Article  PubMed  Google Scholar 

  20. Akdur, H. et al. The evaluation of cardiovascular response to exercise in healthy Turkish children. Turk. J. Pediatr. 51, 472–477 (2009).

    PubMed  Google Scholar 

  21. Oliveira, R. S., Barker, A. R. & Williams, C. A. Cardiac autonomic function, cardiovascular risk and physical activity in adolescents. Int. J. Sports Med. 39, 89–96 (2018).

    Article  PubMed  Google Scholar 

  22. Oliveira, R. S., Barker, A. R., Wilkinson, K. M., Abbott, R. A. & Williams, C. A. Is cardiac autonomic function associated with cardiorespiratory fitness and physical activity in children and adolescents? A systematic review of cross-sectional studies. Int. J. Cardiol. 236, 113–122 (2017).

    Article  PubMed  Google Scholar 

  23. Franssen, W. et al. Cardiac function in adolescents with obesity: cardiometabolic risk factors and impact on physical fitness. Int. J. Obes. 43, 1400–1410 (2019).

    Article  Google Scholar 

  24. Schuster, I. et al. Cardiac function during exercise in obese prepubertal boys: effect of degree of obesity. Obesity 17, 1878–1883 (2009).

    Article  PubMed  Google Scholar 

  25. Gasior, J. S. et al. Normative values for heart rate variability parameters in school-aged children: simple approach considering differences in average heart rate. Front. Physiol. 24, 1495 (2018).

    Article  Google Scholar 

  26. Veijalainen, A. et al. Associations of physical activity, sedentary time, and cardiorespiratory fitness with heart rate variability in 6- to 9-year-old children: the PANIC study. Eur. J. Appl. Physiol. 119, 2487–2498 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Plaza-Florido, A. et al. Heart rate is a better predictor of cardiorespiratory fitness than heart rate variability in overweight/obese children: the Activebrains project. Front. Physiol. 10, 510 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sobradillo, B. et al. Curvas y tablas de crecimiento (estudio longitudinal y transversal) [Internet]. Fundación Faustino Orbegozo Eizaguirre. http://www.aepap.org/pdf/f_orbegozo_04.pdf (2004).

  29. Latorre-Román, P. A. et al. Comprehensive cardiac evaluation to maximal exercise in a contemporary population of prepubertal children. Pediatr. Res. 92, 526–535 https://doi.org/10.1038/s41390-021-01809-8 (2021).

  30. Léger, L. A., Mercier, D., Gadoury, C. & Lambert, J. The multistage 20 metre shuttle run test for aerobic fitness. J. Sports Sci. 6, 93–101 (1988).

    Article  PubMed  Google Scholar 

  31. Borg, G. A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 14, 377–381 (1982).

    Article  CAS  PubMed  Google Scholar 

  32. Parak, J. et al. Evaluation of the beat-to-beat detection accuracy of PulseOn wearable optical heart rate monitor. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 8099–8102 (IEEE, 2015).

  33. Parak, J. & Korhonen, I. Accuracy of Firstbeat Bodyguard 2 beat-to-beat heart rate monitor. White Paper. https://www.firstbeat.com/en/accuracy-firstbeat-bodyguard-2-heart-rate-monitor/ (2013).

  34. European Society of Cardiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 93, 1043–1065 (1996).

    Article  Google Scholar 

  35. Sami, S., Mikko, S. & Antti, K. Advanced methods for processing bioelectrical signals artefact correction for heart beat interval data. https://www.firstbeat.com/app/uploads/2015/10/saalasti_et_al_probisi_2004_congress.pdf (2004).

  36. Routledge, F. S., Campbell, T. S., McFetridge-Durdle, J. A. & Bacon, S. L. Improvements in heart rate variability with exercise therapy. Can. J. Cardiol. 26, 303–312 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cachadiña, E. S. et al. Heart rate variability is lower in patients with intermittent claudication: a preliminary study. Arch. Med. Deport. 35, 218–221 (2018).

    Google Scholar 

  38. von Scheidt, F. et al. Heart rate response during treadmill exercise test in children and adolescents with congenital heart disease. Front. Pediatr. 7, 65 (2019).

    Article  Google Scholar 

  39. Easley, E. A. et al. Recovery responses to maximal exercise in healthy-weight children and children with obesity. Res. Q Exerc. Sport 89, 38–46 (2018).

    Article  PubMed  Google Scholar 

  40. Hager, A. Normal values for cardiopulmonary exercise testing in children. Eur. J. Prev. Cardiol. 18, 675 (2011).

    Article  Google Scholar 

  41. Peçanha, T., Silva-Júnior, N. D. & Forjaz, C. LdeM. Heart rate recovery: autonomic determinants, methods of assessment and association with mortality and cardiovascular diseases. Clin. Physiol. Funct. Imaging 34, 327–339 (2014).

    Article  PubMed  Google Scholar 

  42. Jouven, X. et al. Heart-rate profile during exercise as a predictor of sudden death. N. Engl. J. Med. 352, 1951–1958 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Cheng, Y. J. et al. Heart rate recovery following maximal exercise testing as a predictor of cardiovascular disease and all-cause mortality in men with diabetes. Diabetes Care 26, 2052–2057 (2003).

    Article  PubMed  Google Scholar 

  44. Young, F. L. S. & Leicht, A. S. Short-term stability of resting heart rate variability: influence of position and gender. Appl. Physiol. Nutr. Metab. 36, 210–218 (2011).

    Article  PubMed  Google Scholar 

  45. Speer, K. E., Semple, S., Naumovski, N. & McKune, A. J. Measuring heart rate variability using commercially available devices in healthy children: a validity and reliability study. Eur. J. Investig. Health Psychol. Educ. 10, 390–404 (2020).

    PubMed  PubMed Central  Google Scholar 

  46. Buchheit, M. et al. Supramaximal training and postexercise parasympathetic reactivation in adolescents. Med. Sci. Sport Exerc. 40, 362–371 (2008).

    Article  Google Scholar 

  47. Bentley, R. F. et al. Heart rate variability and recovery following maximal exercise in endurance athletes and physically active individuals. Appl. Physiol. Nutr. Metab. 45, 1138–1144 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Hopkins, W. G., Marshall, S. W., Batterham, A. M. & Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 41, 3–13 (2009).

    Article  PubMed  Google Scholar 

  49. Kwok, S. Y. et al. Resting heart rate in children and adolescents: association with blood pressure, exercise and obesity. Arch. Dis. Child. 98, 287–291 (2013).

    Article  PubMed  Google Scholar 

  50. Fernandes, R. A. et al. Resting heart rate is associated with blood pressure in male children and adolescents. J. Pediatr. 158, 634–637 (2011).

    Article  PubMed  Google Scholar 

  51. Silva, C. F. et al. Relationship between cardiometabolic parameters and elevated resting and effort heart rate in schoolchildren. Arq. Bras. Cardiol. 109, 191–198 (2017).

    PubMed  PubMed Central  Google Scholar 

  52. Lindgren, M. et al. Resting heart rate in late adolescence and long term risk of cardiovascular disease in Swedish men. Int. J. Cardiol. 259, 109–115 (2018).

    Article  PubMed  Google Scholar 

  53. Ørntoft, C. et al. Physical fitness and body composition in 10-12-year-old danish children in relation to leisure-time club-based sporting activities. Biomed. Res. Int. 27, 9807569 (2018).

    Google Scholar 

  54. Sarganas, G., Schaffrath Rosario, A. & Neuhauser, H. K. Resting heart rate percentiles and associated factors in children and adolescents. J. Pediatr. 187, 174.e3–181.e3 (2017).

    Article  Google Scholar 

  55. Salameh, A. et al. Normal limits for heart rate as established using 24-hour ambulatory electrocardiography in children and adolescents. Cardiol. Young. 18, 467–472 (2008).

    Article  PubMed  Google Scholar 

  56. Baruteau, A. E., Perry, J. C., Sanatani, S., Horie, M. & Dubin, A. M. Evaluation and management of bradycardia in neonates and children. Eur. J. Pediatr. 175, 151–161 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Alom, M. M. et al. Physical training induced resting bradycardia and its association with cardiac autonomic nervous activities. Mymensingh Med. J. 20, 665–670 (2011).

    CAS  PubMed  Google Scholar 

  58. Obert, P. et al. Effect of aerobic training and detraining on left ventricular dimensions and diastolic function in prepubertal boys and girls. Int. J. Sports Med. 22, 90–96 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Rowland, T. W. in The Young Athlete 39-49 (Blackwell, 2008).

  60. Triposkiadis, F. et al. Cardiac adaptation to intensive training in prepubertal swimmers. Eur. J. Clin. Invest. 32, 16–23 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Fleming, S. et al. Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: a systematic review of observational studies. Lancet 19, 1011–1018 https://doi.org/10.1016/S0140-6736(10)62226-X (2011).

  62. Andersen, K. L. & Ghesquiere, J. Sex differences in maximal oxygen uptake, heart rate and oxygen pulse at 10 and 14 years in Norwegian children. Hum. Biol. 44, 413–431 (1972).

    CAS  PubMed  Google Scholar 

  63. Fomin, Å. et al. Sex differences in response to maximal exercise stress test in trained adolescents. BMC Pediatr. 12, 127 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Verschuren, O., Maltais, D. B. & Takken, T. The 220-age equation does not predict maximum heart rate in children and adolescents. Dev. Med. Child Neurol. 53, 861–864 (2011).

    Article  PubMed  Google Scholar 

  65. Paridon, S. M. et al. Clinical stress testing in the pediatric age group: a statement from the American Heart Association Council on Cardiovascular Disease in the Young, Committee on Atherosclerosis, Hypertension, and Obesity in Youth. Circulation 113, 1905–1920 (2006).

    Article  PubMed  Google Scholar 

  66. Van Brussel, M., Bongers, B. C., Hulzebos, E. H. J., Burghard, M. & Takken, T. A systematic approach to interpreting the cardiopulmonary exercise test in pediatrics. Pediatr. Exerc. Sci. 31, 194–203 (2019).

    Article  PubMed  Google Scholar 

  67. Gelbart, M., Ziv-Baran, T., Williams, C. A., Yarom, Y. & Dubnov-Raz, G. Prediction of maximal heart rate in children and adolescents. Clin. J. Sport Med. 27, 139–144 (2017).

    Article  PubMed  Google Scholar 

  68. Baba, R., Iwagaki, S., Tauchi, N. & Tsurusawa, M. Is the chronotropic index applicable to children and adolescents? Circ. J. 69, 471–474 (2005).

    Article  PubMed  Google Scholar 

  69. Franssen, W. M. A. et al. Chronotropic incompetence is more frequent in obese adolescents and relates to systemic inflammation and exercise intolerance. J. Sport Health Sci. 12, 194–201 (2023).

  70. Nikolaidis, P. et al. The effect of body mass index on acute cardiometabolic responses to graded exercise testing in children: a narrative review. Sports 6, 103 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Karvonen, J. & Vuorimaa, T. Heart rate and exercise intensity during sports activities. Sport Med. 5, 303–312 (1988).

    Article  CAS  Google Scholar 

  72. Delgado-Floody, P., Alvarez, C., Caamaño-Navarrete, F., Jerez-Mayorga, D. & Latorre-Román, P. Influence of Mediterranean diet adherence, physical activity patterns, and weight status on cardiovascular response to cardiorespiratory fitness test in Chilean school children. Nutrition 71, 110621 (2020).

    Article  PubMed  Google Scholar 

  73. Hansen, D. et al. Exercise tolerance in obese vs. lean adolescents: a systematic review and meta‐analysis. Obes. Rev. 15, 894–904 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Lin, L.-Y. et al. Inverse correlation between heart rate recovery and metabolic risks in healthy children and adolescents: insight from the National Health and Nutrition Examination Survey 1999-2002. Diabetes Care 31, 1015–1020 https://doi.org/10.2337/dc07-2299 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Guilkey, J. P., Dykstra, B., Erichsen, J. & Mahon, A. D. Heart rate response and variability following maximal exercise in overweight children. Pediatr. Exerc. Sci. 29, 341–349 (2017).

    Article  PubMed  Google Scholar 

  76. Laguna, M., Aznar, S., Lara, M. T., Lucía, A. & Ruiz, J. R. Heart rate recovery is associated with obesity traits and related cardiometabolic risk factors in children and adolescents. Nutr. Metab. Cardiovasc. Dis. 23, 995–1001 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Guilkey, J. P., Overstreet, M. & Mahon, A. D. Heart rate recovery and parasympathetic modulation in boys and girls following maximal and submaximal exercise. Eur. J. Appl. Physiol. 115, 2125–2133 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Dimkpa, U. Post-exercise heart rate recovery: an index of cardiovascular fitness. J. Exerc. Physiol. Online 12, 10–22 (2009).

    Google Scholar 

  79. Fernando, R. J., Ravichandran, K. & Vaz, M. Aerobic fitness, heart rate recovery and heart rate recovery time in indian school children. Indian J. Physiol. Pharm. 59, 407–413 (2015).

    Google Scholar 

  80. Sharma, V. K., Subramanian, S. K., Arunachalam, V. & Rajendran, R. Heart rate variability in adolescents–normative data stratified by sex and physical activity. J. Clin. Diagn. Res. 9, CC08 (2015).

    PubMed  PubMed Central  Google Scholar 

  81. Vanderlei, L. C. M., Pastre, C. M., Junior, I. F. F. & de Godoy, M. F. Analysis of cardiac autonomic modulation in obese and eutrophic children. Clinics 65, 789–792 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Jarrin, D. C. et al. Short-term heart rate variability in a population-based sample of 10-year-old children. Pediatr. Cardiol. 36, 41–48 (2015).

    Article  PubMed  Google Scholar 

  83. Gasior, J. S. et al. Interaction between heart rate variability and heart rate in pediatric population. Front. Physiol. 18, 385 (2015).

    Google Scholar 

  84. Bobkowski, W. et al. Measures of heart rate variability in 24-h ECGs depend on age but not gender of healthy children. Front. Physiol. 8, 311 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kaufman, C. L., Kaiser, D. R., Steinberger, J., Kelly, A. S. & Dengel, D. R. Relationships of cardiac autonomie function with metabolic abnormalities in childhood. Obes. Obes. 15, 1164–1171 (2007).

    CAS  Google Scholar 

  86. Leppänen, M. H. et al. Associations of cardiometabolic risk factors with heart rate variability in 6- to 8-year-old children: the PANIC study. Pediatr. Diabetes 21, 251–258 (2020).

    Article  PubMed  Google Scholar 

  87. Subramanian, S. K., Sharma, V. K., Arunachalam, V., Rajendran, R. & Gaur, A. Comparison of baroreflex sensitivity and cardiac autonomic function between adolescent athlete and non-athlete boys–a cross-sectional study. Front. Physiol. 10, 1043 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Chen, H. et al. Effects of physical activity on heart rate variability in children and adolescents: a systematic review and meta-analysis. Cien Saude Colet. 27, 1827–1842 (2022).

    Article  PubMed  Google Scholar 

  89. Grant, C. C., Murray, C., Janse van Rensburg, D. C. & Fletcher, L. A comparison between heart rate and heart rate variability as indicators of cardiac health and fitness. Front. Physiol. 20, 337 (2013).

    Google Scholar 

  90. Gamelin, F. X. et al. Effect of high intensity intermittent training on heart rate variability in prepubescent children. Eur. J. Appl. Physiol. 105, 731–738 (2009).

    Article  PubMed  Google Scholar 

  91. Da Silva, C. C., Pereira, L. M., Cardoso, J. R., Moore, J. P. & Nakamura, F. Y. The effect of physical training on heart rate variability in healthy children: a systematic review with meta-analysis. Pediatr. Exerc. Sci. 26, 147–158 (2014).

    Article  PubMed  Google Scholar 

  92. Mahon, A. D., Anderson, C. S., Hipp, M. J. & Hunt, K. A. Heart rate recovery from submaximal exercise in boys and girls. Med. Sci. Sports Exerc. 35, 2093–2097 (2003).

    Article  PubMed  Google Scholar 

  93. Desai, M. Y., De La Peña-Almaguer, E. & Mannting, F. Abnormal heart rate recovery after exercise as a reflection of an abnormal chronotropic response. Am. J. Cardiol. 15, 1164–1169 (2001).

    Article  Google Scholar 

  94. Legantis, C. D. et al. Role of cardiorespiratory fitness and obesity on hemodynamic responses in children. J. Sport Med. Phys. Fit. 52, 311–318 (2012).

    CAS  Google Scholar 

  95. Kelishadi, R., Mirmoghtadaee, P., Najafi, H. & Keikha, M. Systematic review on the association of abdominal obesity in children and adolescents with cardio-metabolic risk factors. J. Res. Med. Sci. J. Isfahan Univ. Med. Sci. 20, 294 (2015).

    Google Scholar 

  96. Proudfoot, N. A. et al. Physical activity and trajectories of cardiovascular health indicators during early childhood. Pediatrics 144, e20182242 (2019).

    Article  PubMed  Google Scholar 

  97. Dangardt, F. et al. Reduced cardiac vagal activity in obese children and adolescents. Clin. Physiol. Funct. Imaging 31, 108–113 (2011).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors made substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; drafted the article or revised it critically for important intellectual content; and gave final approval of the version to be published.

Corresponding author

Correspondence to Jerónimo Aragón-Vela.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Parents voluntarily signed an informed consent for the participation of their children in this study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latorre-Román, P.Á., de la Casa Pérez, A., Pancorbo-Serrano, D. et al. Influence of physical fitness and weight status on autonomic cardiac modulation in children. Pediatr Res 94, 1754–1763 (2023). https://doi.org/10.1038/s41390-023-02676-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-023-02676-1

This article is cited by

Search

Quick links