Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Basic Science Article
  • Published:

Hypothermia increases cold-inducible protein expression and improves cerebellar-dependent learning after hypoxia ischemia in the neonatal rat

Abstract

Background

Hypoxic ischemic encephalopathy remains a significant cause of developmental disability.1,2 The standard of care for term infants is hypothermia, which has multifactorial effects.3,4,5 Therapeutic hypothermia upregulates the cold-inducible protein RNA binding motif 3 (RBM3) that is highly expressed in developing and proliferative regions of the brain.6,7 The neuroprotective effects of RBM3 in adults are mediated by its ability to promote the translation of mRNAs such as reticulon 3 (RTN3).8

Methods

Hypoxia ischemia or control procedure was conducted in Sprague Dawley rat pups on postnatal day 10 (PND10). Pups were immediately assigned to normothermia or hypothermia at the end of the hypoxia. In adulthood, cerebellum-dependent learning was tested using the conditioned eyeblink reflex. The volume of the cerebellum and the magnitude of cerebral injury were measured. A second study quantified RBM3 and RTN3 protein levels in the cerebellum and hippocampus collected during hypothermia.

Results

Hypothermia reduced cerebral tissue loss and protected cerebellar volume. Hypothermia also improved learning of the conditioned eyeblink response. RBM3 and RTN3 protein expression were increased in the cerebellum and hippocampus of rat pups subjected to hypothermia on PND10.

Conclusions

Hypothermia was neuroprotective in male and female pups and reversed subtle changes in the cerebellum after hypoxic ischemic.

Impact

  • Hypoxic ischemic produced tissue loss and a learning deficit in the cerebellum.

  • Hypothermia reversed both the tissue loss and learning deficit.

  • Hypothermia increased cold-responsive protein expression in the cerebellum and hippocampus.

  • Our results confirm cerebellar volume loss contralateral to the carotid artery ligation and injured cerebral hemisphere, suggesting crossed-cerebellar diaschisis in this model.

  • Understanding the endogenous response to hypothermia might improve adjuvant interventions and expand the clinical utility of this intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hypoxia ischemia was conducted on postnatal day 10, and experimental endpoints are indicated.
Fig. 2: Eyeblink conditioning is consistently impaired in males and females when learning relies on the contralateral (Contra) cerebellar hemisphere and only impaired in a subset of males when reliant upon the ipsilateral (Ipsi) cerebellar hemisphere.
Fig. 3: Hypothermia prevented loss of volume in the contralateral cerebellum and reduced injury magnitude in the ipsilateral cerebrum.
Fig. 4: RBM3 and RTN3 protein levels are elevated in the cerebellum and hippocampus during the third hour of hypothermia.

Similar content being viewed by others

Data availability

The datasets generated and presented here are available from the corresponding author upon request.

References

  1. Fatemi, A., Wilson, M. A. & Johnston, M. V. Hypoxic-ischemic encephalopathy in the term infant. Clin. Perinatol. 36, 835–858 (2009).

    PubMed  PubMed Central  Google Scholar 

  2. Graham, E. M., Ruis, K. A., Hartman, A. L., Northington, F. J. & Fox, H. E. A systematic review of the role of intrapartum hypoxia-ischemia in the causation of neonatal encephalopathy. Am. J. Obstet. Gynecol. 199, 587–595 (2008).

    CAS  PubMed  Google Scholar 

  3. Askalan, R., Wang, C., Shi, H., Armstrong, E. & Yager, J. Y. The effect of postischemic hypothermia on apoptotic cell death in the neonatal rat brain. Dev. Neurosci. 33, 320–329 (2011).

    CAS  PubMed  Google Scholar 

  4. Wassink, G., Gunn, E. R., Drury, P. P., Bennet, L. & Gunn, A. J. The mechanisms and treatment of asphyxial encephalopathy. Front. Neurosci. 8, 40 (2014).

    PubMed  PubMed Central  Google Scholar 

  5. Colbourne, F., Grooms, S. Y., Zukin, R. S., Buchan, A. M. & Bennett, M. V. L. Hypothermia rescues hippocampal CA1 neurons and attenuates down-regulation of the AMPA receptor GluR2 subunit after forebrain ischemia. Proc. Natl Acad. Sci. USA. 100, 2906–2910 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Pilotte, J., Cunningham, B. A., Edelman, G. M. & Vanderklish, P. W. Developmentally regulated expression of the cold-inducible RNA-binding motif protein 3 in euthermic rat brain. Brain Res. 1258, 12–24 (2009).

    CAS  PubMed  Google Scholar 

  7. Zhu, X. et al. RBM3 promotes neurogenesis in a niche-dependent manner via IMP2-IGF2 signaling pathway after hypoxic-ischemic brain injury. Nat. Commun. 10, 3983. https://doi.org/10.1038/s41467-019-11870-x (2019).

  8. Bastide, A. et al. RTN3 is a novel cold-induced protein and mediates neuroprotective effects of RBM3. Curr. Biol. 27, 638–650 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Azzopardi, D. et al. Implementation and conduct of therapeutic hypothermia for perinatal Asphyxial encephalopathy in the UK – analysis of national data. PLoS One 7, e38504 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Gunn, A. J. et al. Therapeutic hypothermia translates from ancient history in to practice. Pediatr. Res. 81, 202–209 (2017).

    PubMed  Google Scholar 

  11. Davidson, J. O., Wassink, G., Van Den Heuij, L. G., Bennet, L. & Gunn, A. J. Therapeutic hypothermia for neonatal hypoxic-ischemic encephalopathy – where to from here? Front. Neurol. 6, 198 (2015).

    PubMed  PubMed Central  Google Scholar 

  12. Laptook, A. R., Corbett, R. J. T., Sterett, R., Garcia, D. & Tollefsbol, G. Quantitative relationship between brain temperature and energy utilization rate measured in Vivo using 31P and 1H magnetic resonance spectroscopy. Pediatr. Res. 38, 919–925 (1995).

    CAS  PubMed  Google Scholar 

  13. Wassink, G. et al. A working model for hypothermic neuroprotection. J. Physiol. 596, 5641–5654 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sosunov, S., Bhutada, A., Niatsetskaya, Z., Starkov, A. & Ten, V. Mitochondrial calcium buffering depends upon temperature and is associated with hypothermic neuroprotection against hypoxia-ischemia injury. PLoS One 17, 1–11. (2022).

    Google Scholar 

  15. Spriggs, K. A., Bushell, M. & Willis, A. E. Translational regulation of gene expression during conditions of cell stress. Mol. Cell 40, 228–237 (2010).

    CAS  PubMed  Google Scholar 

  16. Knight, J. R. P. et al. Eukaryotic elongation factor 2 kinase regulates the cold stress response by slowing translation elongation. Biochem. J. 465, 227–238 (2015).

    CAS  PubMed  Google Scholar 

  17. Dresios, J. et al. Cold stress-induced protein Rbm3 binds 60S ribosomal subunits, alters microRNA levels, and enhances global protein synthesis. Proc. Natl Acad. Sci. USA. 102, 1865–1870 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Peretti, D. et al. RBM3 mediates structural plasticity and protective effects of cooling in neurodegeneration. Nature 518, 236–239 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Chip, S. et al. The RNA-binding protein RBM3 is involved in hypothermia induced neuroprotection. Neurobiol. Dis. 43, 388–396 (2011).

    CAS  PubMed  Google Scholar 

  20. Zhu, X., Zelmer, A., Kapfhammer, J. P. & Wellmann, S. Cold-inducible RBM3 inhibits PERK phosphorylation through cooperation with NF90 to protect cells from endoplasmic reticulum stress. FASEB J. 30, 624–634 (2016).

    CAS  PubMed  Google Scholar 

  21. Rosenthal, L.-M. et al. RBM3 and CIRP expressions in targeted temperature management treated cardiac arrest patients—a prospective single center study. PLoS One 14, e0226005 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Tong, G. et al. Effects of moderate and deep hypothermia on RNA-binding proteins RBM3 and CIRP expressions in murine hippocampal brain slices. Brain Res. 1504, 74–84 (2013).

    CAS  PubMed  Google Scholar 

  23. Reinboth, B. S. et al. Endogenous hypothermic response to hypoxia reduces brain injury: Implications for modeling hypoxic-ischemic encephalopathy and therapeutic hypothermia in neonatal mice. Exp. Neurol. 283, 264–275 (2016).

    CAS  PubMed  Google Scholar 

  24. Jackson, T. C., Kotermanski, S. E. & Kochanek, P. M. Infants uniquely express high levels of RBM3 and other cold-adaptive neuroprotectant proteins in the human brain. Dev. Neurosci. 40, 325–336 (2018).

    CAS  PubMed  Google Scholar 

  25. Jackson, T. C. et al. Hypoxia–ischemia-mediated effects on neurodevelopmentally regulated cold-shock proteins in neonatal mice under strict temperature control. Pediatr. Res. 1–13. https://doi.org/10.1038/s41390-022-01990-4 (2022).

  26. Sun, Y. et al. Rates of local cerebral protein synthesis in the rat during normal postnatal development. Am. J. Physiol. 268, 549–561 (1995).

    Google Scholar 

  27. Rice, J. E., Vannucci, R. C. & Brierley, J. B. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann. Neurol. 9, 131–141 (1981).

    PubMed  Google Scholar 

  28. Vannucci, R. C. & Vannucci, S. J. Perinatal hypoxic-ischemic brain damage: evolution of an animal model. Dev. Neurosci. 27, 81–86 (2005).

    CAS  PubMed  Google Scholar 

  29. Benitez, S. G., Castro, A. E., Patterson, S. I., Muñoz, E. M. & Seltzer, A. M. Hypoxic preconditioning differentially affects GABAergic and glutamatergic neuronal cells in the injured cerebellum of the neonatal rat. PLoS One 9, e102056 (2014).

    PubMed  PubMed Central  Google Scholar 

  30. Sanches, E. F., Van De Looij, Y., Toulotte, A., Sizonenko, S. V. & Lei, H. Mild neonatal brain hypoxia-ischemia in very immature rats causes long-term behavioral and cerebellar abnormalities at adulthood. Front. Physiol. 10, 1–12. (2019).

    Google Scholar 

  31. Biran, V. et al. Cerebellar abnormalities following hypoxia alone compared to hypoxic-ischemic forebrain injury in the developing rat brain. Neurobiol. Dis. 41, 138–146 (2011).

    PubMed  Google Scholar 

  32. Taylor, D. L., Joashi, U. C., Sarraf, C., Edwards, A. D. & Mehmet, H. Consequential apoptosis in the cerebellum following injury to the developing rat forebrain. Brain Pathol. 16, 195–201 (2006).

    PubMed  PubMed Central  Google Scholar 

  33. Annink, K. V. et al. Cerebellar injury in term neonates with hypoxic–ischemic encephalopathy is underestimated. Pediatr. Res. 89, 1171–1178 (2021).

    PubMed  Google Scholar 

  34. Kwan, S. et al. Injury to the cerebellum in term asphyxiated newborns treated with hypothermia. Am. J. Neuroradiol. 36, 1542–1549 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Stone, B. S. et al. Delayed neural network degeneration after neonatal hypoxia-ischemia. Ann. Neurol. 64, 535–546 (2008).

    PubMed  PubMed Central  Google Scholar 

  36. Lemmon, M. E. et al. Diffusion tensor imaging detects occult cerebellar injury in severe neonatal hypoxic-ischemic encephalopathy. Dev. Neurosci. 39, 207–214 (2017).

    CAS  PubMed  Google Scholar 

  37. Sobesky, J. et al. Crossed cerebellar diaschisis in acute human stroke: a PET study of serial changes and response to supratentorial reperfusion. J. Cereb. Blood Flow. Metab. 25, 1685–1691 (2005).

    PubMed  Google Scholar 

  38. Lavond, D. G., Kim, J. J. & Thompson, R. F. Mammalian brain substrates of aversive classical conditioning. Annu. Rev. Psychol. 44, 317–342 (1993).

    CAS  PubMed  Google Scholar 

  39. Clark, G. A., McCormick, D. A., Lavond, D. G. & Thompson, R. F. Effects of lesions of cerebellar nuclei on conditioned behavioral and hippocampal neuronal responses. Brain Res. 291, 125–136 (1984).

    CAS  PubMed  Google Scholar 

  40. McCormick, D. A. & Thompson, R. F. Cerebellum: essential involvement in the classically conditioned eyelid response. Science 223, 296–299 (1984).

    CAS  PubMed  Google Scholar 

  41. McCormick, D. A., Clark, G. A., Lavond, D. G. & Thompson, R. F. Initial localization of the memory trace for a basic form of learning. Proc. Natl Acad. Sci. USA. 79, 2731–2735 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Freeman, J. H. Cerebellar learning mechanisms. Brain Res. 1621, 260–269 (2015).

    CAS  PubMed  Google Scholar 

  43. Lincoln, J. S., McCormick, D. A. & Thompson, R. F. Ipsilateral cerebellar lesions prevent learning of the classically conditioned nictitating membrane/eyelid response. Brain Res. 242, 190–193 (1982).

    CAS  PubMed  Google Scholar 

  44. Sokolov, D. et al. Melatonin and andrographolide synergize to inhibit the colospheroid phenotype by targeting Wnt/beta-catenin signaling. J. Pineal Res. 73, 1–13. (2022).

    Google Scholar 

  45. Waddell, J., Rickman, N. C., He, M., Tang, N. & Bearer, C. F. Neonatal hypoxia ischemia redistributes L1 cell adhesion molecule into rat cerebellar lipid rafts. Pediatr. Res. 92, 1325–1331. https://doi.org/10.1038/s41390-022-01974-4 (2022).

  46. Tang, N. et al. Ethanol causes the redistribution of L1 cell adhesion molecule in lipid rafts. J. Neurochem. 119, 859–867 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Milstone, A. M. et al. Chlorhexidine inhibits L1 cell adhesion molecule-mediated neurite outgrowth in vitro. Pediatr. Res. 75, 8–13 (2014).

    CAS  PubMed  Google Scholar 

  48. Grumati, P. et al. Full length RTN3 regulates turnover of tubular endoplasmic reticulum via selective autophagy. Elife 6, 1–32. (2017).

    Google Scholar 

  49. Chavez-Valdez, R., Flock, D. L., Martin, L. J. & Northington, F. J. Endoplasmic reticulum pathology and stress response in neurons precede programmed necrosis after neonatal hypoxia-ischemia. Int. J. Dev. Neurosci. 48, 58–70 (2016).

    PubMed  Google Scholar 

  50. Carloni, S. et al. Increased autophagy reduces endoplasmic reticulum stress after neonatal hypoxia-ischemia: role of protein synthesis and autophagic pathways. Exp. Neurol. 255, 103–112 (2014).

    CAS  PubMed  Google Scholar 

  51. Wilkinson, S. Emerging principles of selective ER autophagy. J. Mol. Biol. 432, 185–205 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Schuck, S., Prinz, W. A., Thorn, K. S., Voss, C. & Walter, P. Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response. J. Cell Biol. 187, 525–536 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Parashar, S. et al. Endoplasmic reticulum tubules limit the size of misfolded protein condensates. Elife 10, e71642 (2021).

  54. Friedman, J. R., DiBenedetto, J. R., West, M., Rowland, A. A. & Voeltz, G. K. Endoplasmic reticulum-endosome contact increases as endosomes traffic and mature. Mol. Biol. Cell 24, 1030–1040 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Friedman, J. R. & Voeltz, G. K. The ER in 3D: a multifunctional dynamic membrane network. Trends Cell Biol. 21, 709–717 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Bernales, S., McDonald, K. L. & Walter, P. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol. 4, 2311–2324. (2006).

    CAS  Google Scholar 

  57. Schuck, S., Gallagher, C. M. & Walter, P. ER-phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery. J. Cell Sci. 127, 4078–4088 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Pupyshev, A. B. et al. Combined induction of mTOR-dependent and mTOR-independent pathways of autophagy activation as an experimental therapy for Alzheimer’s disease-like pathology in a mouse model. Pharmacol. Biochem. Behav. 217, 173406 (2022).

    CAS  PubMed  Google Scholar 

  59. Li, D. et al. Upregulation of Sec22b plays a neuroprotective role in a rat model of traumatic brain injury via inducing protective autophagy. Brain Res. Bull. 166, 29–36 (2021).

    CAS  PubMed  Google Scholar 

  60. Kim, B. H. et al. Moderately inducitng autophagy reduces tertiary brain injury after perinatal hypoxia-ischemia. Cells 10, 898 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhou, T. et al. Mild hypothermia protects hippocampal neurons against oxygen-glucose deprivation/reperfusion-induced injury by improving lysosomal function and autophagic flux. Exp. Cell Res. 358, 147–160 (2017).

    CAS  PubMed  Google Scholar 

  62. Jin, Y. et al. Moderate hypothermia significantly decreases hippocampal cell death involving autophagy pathway after moderate traumatic brain injury. J. Neurotrauma 32, 1090–1100 (2015).

    PubMed  PubMed Central  Google Scholar 

  63. Jin, Y., Lei, J., Lin, Y., Gao, G. Y. & Jiang, J. Y. Autophagy inhibitor 3-MA weakens neuroprotective effects of posttraumatic brain injury moderate hypothermia. World Neurosurg. 88, 433–446 (2016).

    PubMed  Google Scholar 

  64. Geddes, R., Vannucci, R. C. & Vannucci, S. J. Delayed cerebral atrophy following moderate hypoxia-ischemia in the immature rat. Dev. Neurosci. 23, 180–185 (2001).

    CAS  PubMed  Google Scholar 

  65. Tang, S. et al. Neuroprotective effects of acetyl-L-carnitine on neonatal hypoxia ischemia-induced brain injury in rats. Dev. Neurosci. 38, 384–396 (2017).

  66. Shamoto, H. & Chugani, H. T. Glucose metabolism in the human cerebellum: an analysis of crossed cerebellar diaschisis in children with unilateral cerebral inrjury. J. Child Neurol. 12, 407–414 (2016).

    Google Scholar 

  67. Onat, F. & Çavdar, S. Cerebellar connections: hypothalamus. Cerebellum 2, 263–269 (2003).

    PubMed  Google Scholar 

  68. Çavdar, S. et al. Cerebellar connections to the rostral reticular nucleus of the thalamus in the rat. J. Anat. 201, 485–491 (2002).

    PubMed  PubMed Central  Google Scholar 

  69. Watson, T. C. et al. Anatomical and physiological foundations of cerebello-hippocampal interaction. Elife 8, 1–28. (2019).

    Google Scholar 

  70. Xiao, L., Bornmann, C., Hatstatt-Burklé, L. & Scheiffele, P. Regulation of striatal cells and goal-directed behavior by cerebellar outputs. Nat. Commun. 9, 1–14. (2018).

    Google Scholar 

  71. D’Angelo, E. & De Zeeuw, C. I. Timing and plasticity in the cerebellum: focus on the granular layer. Trends Neurosci. 32, 30–40 (2009).

    PubMed  Google Scholar 

  72. Steinmetz, J. E. et al. Classical conditioning of the rabbit eyelid response with a mossy-fiber stimulation CS: I. Pontine nuclei and middle cerebellar peduncle stimulation. Behav. Neurosci. 100, 878–887 (1986).

    CAS  PubMed  Google Scholar 

  73. Apps, R. & Hawkes, R. Cerebellar cortical organization: a one-map hypothesis. Nat. Rev. Neurosci. 10, 670–681 (2009).

    CAS  PubMed  Google Scholar 

  74. Hawkes, R. Purkinje cell stripes and long-term depression at the parallel fiber-Purkinje cell synapse. Front. Syst. Neurosci. 8, 1–11. (2014).

    Google Scholar 

  75. Gilbert, P. F. C. & Thach, W. T. Purkinje cell activity during motor learning. Brain Res. 128, 309–328 (1977).

    CAS  PubMed  Google Scholar 

  76. Koekkoek, S. K. E. et al. Cerebellar LTD and learning-dependent timing of conditioned eyelid responses. Science 301, 1736–1740 (2003).

    CAS  PubMed  Google Scholar 

  77. Jirenhed, D. A., Bengtsson, F. & Hesslow, G. Acquisition, extinction, and reacquisition of a cerebellar cortical memory trace. J. Neurosci. 27, 2493–2502 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Garcia, K. S. & Mauk, M. D. Pharmacological analysis of cerebellar contributions to the timing and expression of conditioned eyelid responses. Neuropharmacology 37, 471–480 (1998).

    CAS  PubMed  Google Scholar 

  79. Green, J. T. & Steinmetz, J. E. Purkinje cell activity in the cerebellar anterior lobe after rabbit eyeblink conditioning. Learn. Mem. 12, 260–269 (2005).

    PubMed  PubMed Central  Google Scholar 

  80. Freeman, J. H. & Steinmetz, A. B. Neural circuitry and plasticity mechanisms underlying delay eyeblink conditioning. Learn. Mem. 18, 666–677 (2011).

    PubMed  PubMed Central  Google Scholar 

  81. Lavond, D. G., Hembree, T. L. & Thompson, R. F. Effect of kainic acid lesions of the cerebellar interpositus nucleus on eyelid conditioning in the rabbit. Brain Res. 326, 179–182 (1985).

    CAS  PubMed  Google Scholar 

  82. Steinmetz, J. E., Logue, S. F. & Steinmetz, S. S. Rabbit classically conditioned eyelid responses do not reappear after interpositus nucleus lesion and extensive post-lesion training. Behav. Brain Res. 51, 103–114 (1992).

    CAS  PubMed  Google Scholar 

  83. Mauk, M. D. & Donegan, N. H. A model of pavlovian eyelid conditioning based on the synaptic organization of the cerebellum. Learn. Mem. 4, 130–158 (1997).

    CAS  PubMed  Google Scholar 

  84. Medina, J. F. & Mauk, M. D. Simulations of cerebellar motor learning: computational analysis of plasticity at the mossy fiber to deep nucleus synapse. J. Neurosci. 19, 7140–7151 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ohyama, T., Nores, W. L., Medina, J. F., Riusech, F. A. & Mauk, M. D. Learning-induced plasticity in deep cerebellar nucleus. J. Neurosci. 26, 12656–12663 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Freeman, J. H. & Nicholson, D. A. Neuronal activity in the cerebellar interpositus and lateral pontine nuclei during inhibitory classical conditioning of the eyeblink response. Brain Res. 833, 225–233 (1999).

    CAS  PubMed  Google Scholar 

  87. Peretti, D. et al. TrkB signaling regulates the cold-shock protein RBM3-mediated neuroprotection. Life Sci. Alliance 4, e202000884 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Cohen-Corey, S. et al. Brain‐derived neurotrophic factor and the development of structural neuronal connectivity. Dev. Neurobiol. 70, 271–288 (2010).

    Google Scholar 

Download references

Funding

This study was supported by NIH/NICHD R03 HD085928 and NIH/NINDS R01 NS122777 to J.W., University of Maryland, Baltimore, Institute for Clinical & Translational Science Award to J.W., and the Richard Schwartz Research Award to A.B.

Author information

Authors and Affiliations

Authors

Contributions

M.P.-P. made substantial contributions to data collection and revising the manuscript critically for important intellectual content and final approval of the version to be submitted. A.J. made substantial contributions to data collection and organization. K.B. made substantial contributions to data collection and organization. J.W. made substantial contributions to conception and design, gathering, analyzing and interpreting data, drafting and revising the article critically for important intellectual content, and final approval of the version to be submitted. A.B. made substantial contributions to conception and design, acquisition of data and interpretation of data, drafting the article and revising it critically for important intellectual content, and final approval of the version to be submitted.

Corresponding author

Correspondence to Jaylyn Waddell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez-Pouchoulen, M., Jaiyesimi, A., Bardhi, K. et al. Hypothermia increases cold-inducible protein expression and improves cerebellar-dependent learning after hypoxia ischemia in the neonatal rat. Pediatr Res 94, 539–546 (2023). https://doi.org/10.1038/s41390-023-02535-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-023-02535-z

Search

Quick links