Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Basic Science Article
  • Published:

Congenital diaphragmatic hernia: phosphodiesterase-5 and Arginase inhibitors prevent pulmonary vascular hypoplasia in rat lungs

Abstract

Background

Severe pulmonary hypoplasia related to congenital diaphragmatic hernia (CDH) continues to be a potentially fatal condition despite advanced postnatal management strategies.

Objective

To evaluate the effect of the antenatal sildenafil and 2(S)-amino-6-boronohexanoic acid (ABH-Arginase inhibitor) on lung volume, pulmonary vascular development, and nitric oxide (NO) synthesis in a Nitrofen-induced CDH rat model.

Methods

Nitrofen-induced CDH rat model was used. Nitrofen was administrated on embryonic day(E) 9,5. At E14, five intervention groups were treated separately: Nitrofen, Nitrofen+Sildenafil, Nitrofen+ABH, Nitrofen+Sildenafil+ABH and Control. At term, offspring’s lungs were weighed, some paraffin-embedded for histology, others snap-frozen to analyze eNOS, Arginase I–II expression, and activity.

Results

In CDH-bearing offsprings, ABH or Sildenafil+ABH preserved the total lung/body-weight index (p < 0.001), preventing pulmonary vascular smooth muscle cell hyperproliferation and improving lung morphometry. Sildenafil+ABH increased 1.7-fold the lung nitrite levels (p < 0.01) without changes in eNOS expression. Sildenafil and ABH improved the number of pulmonary vessels.

Conclusion

These results suggest that in this CDH rat model, the basal activity of Arginase participates in the lung volume and, together with phosphodiesterase-5, regulates NOS activity in the term fetal lung. The combined treatment (Sildenafil+ABH) could revert some of the pulmonary features in CDH by improving the local NO synthesis and preventing smooth muscle cell hyperproliferation.

Impact

  • This study presents Arginase inhibition as a new therapeutic target and the importance of the combined antenatal treatment to improve pulmonary vascular development in a congenital diaphragmatic hernia (CDH) rat model.

  • This study shows that the action of an Arginase inhibitor (ABH) enhances the effects already described for sildenafil in this model.

  • These results reinforce the importance of prenatal treatments’ synergy in recovering the hypoplastic lung in the Nitrofen-induced CDH rat model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Protocol overview.
Fig. 2: Morphometry of lung size, vascularity and muscular wall thickness.
Fig. 3: Histological characteristics of pulmonary vessels and tissue in controls and different treatment groups.
Fig. 4: Nitrites and eNOS and Arginase expression in lung tissue of the offspring.
Fig. 5: Effect of the combination of prenatal treatment with ABH and Sildenafil in the CDH nitrofen-induced rat model.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Mayer, S., Metzger, R. & Kluth, D. The embryology of the diaphragm. Semin. Pediatr. Surg. 20, 161–169 (2011).

    Article  PubMed  Google Scholar 

  2. Deprest, J. A. et al. Changing perspectives on the perinatal management of isolated congenital diaphragmatic hernia in Europe. Clin. Perinatol. 36, 329–347 (2009).

    Article  Google Scholar 

  3. Hagadorn, J. I. et al. Trends in treatment and in-hospital mortality for neonates with congenital diaphragmatic hernia. J. Perinatol. 35, 748–754 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Gien, J. & Kinsella, J. P. Management of pulmonary hypertension in infants with congenital diaphragmatic hernia. J. Perinatol. 36, S28–S31 (2016).

    Article  PubMed  Google Scholar 

  5. Deprest, J. A. et al. Randomized trial of fetal surgery for severe left diaphragmatic hernia. N. Engl. J. Med. 385, 107–118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kashyap, A. et al. Antenatal medical therapies to improve lung development in congenital diaphragmatic hernia. Am. J. Perinatol. 35, 823–836 (2018).

    Article  PubMed  Google Scholar 

  7. Kitagawa, M., Hislop, A., Boyden, E. A. & Reid, L. Lung hypoplasia in congenital diaphragmatic hernia a quantitative study of airway, artery, and alveolar development. Br. J. Surg. 58, 342–346 (1971).

    Article  CAS  PubMed  Google Scholar 

  8. Shinkai, M., Shinkai, T., Montedonico, S. & Puri, P. Effect of VEGF on the branching morphogenesis of normal and nitrofen-induced hypoplastic fetal rat lung explants. J. Pediatr. Surg. 41, 781–786 (2006).

    Article  PubMed  Google Scholar 

  9. Oue, T., Shima, H., Taira, Y. & Puri, P. Administration of antenatal glucocorticoids upregulates peptide growth factor gene expression in nitrofen-induced congenital diaphragmatic hernia in rats. J. Pediatr. Surg. 35, 109–112 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Keller, R. L. et al. Congenital diaphragmatic hernia: endothelin-1, pulmonary hypertension, and disease severity. Am. J. Respir. Crit. Care Med. 182, 555–561 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sood, B. G., Wykes, S., Landa, M., De Jesus, L. & Rabah, R. Expression of eNOS in the lungs of neonates with pulmonary hypertension. Exp. Mol. Pathol. 90, 9–12 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Cabral, J. E. B. & Belik, J. Persistent pulmonary hypertension of the newborn: recent advances in pathophysiology and treatment. J. Pediatr. (Rio. J.). 89, 226–242 (2013).

    Article  PubMed  Google Scholar 

  13. Lemus-Varela, M. et al. Antenatal use of bosentan and/or sildenafil attenuates pulmonary features in rats with congenital diaphragmatic hernia. World J. Pediatr. 10, 354–359 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Kattan, J., Céspedes, C., González, A. & Vio, C. P. Sildenafil stimulates and dexamethasone inhibits pulmonary vascular development in congenital diaphragmatic hernia rat lungs. Neonatology 106, 74–80 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Burgos, C. M. et al. Improved pulmonary function in the nitrofen model of congenital diaphragmatic hernia following prenatal maternal dexamethasone and/or sildenafil. Pediatr. Res. 80, 577–585 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Durante, W. Role of arginase in vessel wall remodeling. Front. Immunol. 4, 111 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yang, Z. & Ming, X.-F. Arginase: the emerging therapeutic target for vascular oxidative stress and inflammation. Front. Immunol. 4, 149 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Belik, J., Shehnaz, D., Pan, J. & Grasemann, H. Developmental changes in arginase expression and activity in the lung. Am. J. Physiol. Lung Cell Mol. Physiol. 294, 498–504 (2008).

    Article  Google Scholar 

  19. Krause, B. J. et al. Arginase-endothelial nitric oxide synthase imbalance contributes to endothelial dysfunction during chronic intermittent hypoxia. J. Hypertens. 33, 515–524 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Chen, B., Calvert, A. E., Cui, H. & Nelin, L. D. Hypoxia promotes human pulmonary artery smooth muscle cell proliferation through induction of arginase. Blood Cells Mol. Dis. 31, 1151–1159 (2003).

    Google Scholar 

  21. XU, W. et al. Increased arginase II and decreased NO synthesis in endothelial cells of patients with pulmonary arterial hypertension. FASEB J. 18, 1746–1748 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Manson, J. M. Mechanism of nitrofen teratogenesis. Environ. Health Perspect. 70, 137–147 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Krause, B. J. et al. Chronic intermittent hypoxia-induced vascular dysfunction in rats is reverted by N-acetylcysteine supplementation and arginase inhibition. Front. Physiol. 9, 901 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Grasemann, H. et al. Arginase inhibition prevents bleomycin-induced pulmonary hypertension, vascular remodeling, and collagen deposition in neonatal rat lungs. Am. J. Physiol. Lung Cell. Mol. Physiol. 308, L503–L510 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Kim, J. H. et al. Arginase inhibition restores NOS coupling and reverses endothelial dysfunction and vascular stiffness in old rats. J. Appl. Physiol. 107, 1249–1257 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mehl, A. et al. Effect of arginase inhibition on pulmonary L-arginine metabolism in murine pseudomonas pneumonia. PLoS One 9, e90232 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  27. Xu, L. et al. Arginase and autoimmune inflammation in the central nervous system. Immunology 110, 141–148 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Corraliza, I. M., Campo, M. L., Soler, G. & Modolell, M. Determination of arginase activity in macrophages: a micromethod. J. Immunol. Methods 174, 231–235 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Marulanda, K., Tsihlis, N. D., McLean, S. E. & Kibbe, M. R. Emerging antenatal therapies for congenital diaphragmatic hernia-induced pulmonary hypertension in preclinical models. Pediatr. Res. 89, 1641–1649 (2021).

    Article  PubMed  Google Scholar 

  30. Luong, C. et al. Antenatal sildenafil treatment attenuates pulmonary hypertension in experimental congenital diaphragmatic hernia. Circulation 123, 2120–2131 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Mous, D. S. et al. Treatment of rat congenital diaphragmatic hernia with sildenafil and NS-304, selexipag’s active compound, at the pseudoglandular stage improves lung vasculature. Am. J. Physiol. Lung Cell. Mol. Physiol. 315, L276–L285 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Yamamoto, Y. et al. Doppler parameters of fetal lung hypoplasia and impact of sildenafil. Am. J. Obstet. Gynecol. 211, 263.e1–8 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Russo, F. M. et al. Transplacental sildenafil rescues lung abnormalities in the rabbit model of diaphragmatic hernia. Thorax 71, 517–525 (2016).

    Article  PubMed  Google Scholar 

  34. Rabelo, L. A., Ferreira, F. O., Nunes-Souza, V., da Fonseca, L. J. S. & Goulart, M. O. F. Arginase as a critical prooxidant mediator in the binomial endothelial dysfunction-atherosclerosis. Oxid. Med. Cell. Longev. 2015, 924860 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Durante, W., Johnson, F. K. & Johnson, R. A. Arginase: a critical regulator of nitric oxide synthesis and vascular function. Clin. Exp. Pharmacol. Physiol. 34, 906–911 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sasaki, A., Doi, S., Mizutani, S. & Azuma, H. Roles of accumulated endogenous nitric oxide synthase inhibitors, enhanced arginase activity, and attenuated nitric oxide synthase activity in endothelial cells for pulmonary hypertension in rats. Am. J. Physiol. Lung Cell. Mol. Physiol. 292, L1480–L1487 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Pernow, J. & Jung, C. Arginase as a potential target in the treatment of cardiovascular disease: reversal of arginine steal? Cardiovasc. Res. 98, 334–343 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Hochstedler, C. M., Leidinger, M. R., Maher-Sturm, M. T., Gibson-Corley, K. N. & Meyerholz, D. K. Immunohistochemical detection of arginase-I expression in formalin-fixed lung and other tissues. J. Histotechnol. 36, 128–134 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Steppan, J., Nyhan, D. & Berkowitz, D. E. Development of novel arginase inhibitors for therapy of endothelial dysfunction. Front. Immunol. 4, 278 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Perveen, S. et al. MIF inhibition enhances pulmonary angiogenesis and lung development in congenital diaphragmatic hernia. Pediatr. Res. 85, 711–718 (2019).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the following grants: FONDECYT N° 1171406 (P.C.) and Grant PIA CONICYT ACE210009 to CARE-UC and a donation of SQM to the Pontificia Universidad Católica de Chile (PUC). The UC CINBIOT Animal Facility is funded by PIA CONICYT ECM-07. Grant Faculty of Medicine, Pediatric Division at PUC. We thank MECESUP PUC0815 grant – Equipamiento Científico Mayor Centro de Investigaciones Médicas of Pontificia Universidad Católica de Chile for the access to Synergy II microplate fluorescence reader (BioTek Instruments, Winooski, VT) and Carl Zeiss Axio Imager A1 fluorescence microscope (Göttingen, Germany).

Funding

Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) #1171406, Grant PIA CONICYT AFB170005, Proyecto Semilla Interdisciplinario PS 14/15, DIDEMUC, Faculty of Medicine and Research grant from the Pediatric Division at PUC.

Author information

Authors and Affiliations

Authors

Contributions

J.K., P.C., and A.T. conceived and designed the experiments. A.T., O.A., C.C., C.P.V., and C.H. collected and analyzed the experimental data. J.K., P.C., A.T., O.A., and O.N. interpreted the experimental data. J.K., P.C., A.T., and O.A. drafted the article. All authors critically read and corrected the manuscript draft and approved the final manuscript.

Corresponding authors

Correspondence to Paola Casanello or Javier Kattan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toso, A., Aránguiz, O., Céspedes, C. et al. Congenital diaphragmatic hernia: phosphodiesterase-5 and Arginase inhibitors prevent pulmonary vascular hypoplasia in rat lungs. Pediatr Res 95, 941–948 (2024). https://doi.org/10.1038/s41390-022-02366-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-022-02366-4

Search

Quick links