Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ScRNA-seq of gastric cancer tissues reveals differences in the immune microenvironment of primary tumors and metastases

Abstract

Gastric carcinoma (GC) is regarded as one of the deadliest cancer characterized by diversity and haste metastasis and suffers limited understanding of the spatial variation between primary and metastatic GC tumors. In this project, transcriptome analysis on 46 primary tumorous, adjacent non-tumorous, and metastatic GC tissues was performed. The results demonstrated that metastatic tumorous tissues had diminished CD8+ T cells compared to primary tumors, which is mechanistically attributed to being due to innate immunity differences represented by marked differences in macrophages between metastatic and primary tumors, particularly those expressing ApoE, where their abundance is linked to unfavorable prognoses. Examining variations in gene expression and interactions indicated possible strategies of immune evasion hindering the growth of CD8+ T cells in metastatic tumor tissues. More insights could be gained into the immune evasion mechanisms by portraying information about the GC ecosystem.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Single-cell RNA-seq profiling the tumor ecosystem in primary and metastatic GC.
Fig. 2: The heterogeneity of T cells in metastatic and primary tumor tissues.
Fig. 3: CD8+ T cells demonstrate different transition trajectory in primary and metastatic GC.
Fig. 4: Functional differences between metastatic and primary samples of CD8+ T cells.
Fig. 5: Forced ApoE expression in macrophages related with an immunosuppression microenvironment.
Fig. 6: ApoE is related to gastric cancer metastasis and upregulates TGF-β expression in GC.
Fig. 7: PDO model validates the suppressive effect of ApoE on T-cell function.
Fig. 8: ApoE inhibits T-cell functionality in vivo.
Fig. 9: ApoE suppresses T-cell function.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Zheng R, Zhang S, Zeng H, Wang S, Sun K, Chen R, et al. Cancer incidence and mortality in China, 2016. J Natl Cancer Cent. 2022;2:1–9.

    Article  Google Scholar 

  2. Rawla P, Barsouk A. Epidemiology of gastric cancer: global trends, risk factors and prevention. Prz Gastroenterol. 2019;14:26–38.

    CAS  PubMed  Google Scholar 

  3. Dolcetti R, De Re V, Canzonieri V. Immunotherapy for gastric cancer: time for a personalized approach? Int J Mol Sci. 2018;19:1602.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wagner J, Rapsomaniki MA, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A single-cell atlas of the tumor and immune ecosystem of human breast cancer. Cell. 2019;177:1330–1345.e18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. House IG, Savas P, Lai J, Chen AXY, Oliver AJ, Teo ZL, et al. Macrophage-derived CXCL9 and CXCL10 are required for antitumor immune responses following immune checkpoint blockade. Clin Cancer Res. 2020;26:487–504.

    Article  CAS  PubMed  Google Scholar 

  6. Gao Y, Bado I, Wang H, Zhang W, Rosen JM, Zhang XH. Metastasis organotropism: redefining the congenial soil. Dev Cell. 2019;49:375–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Azizi E, Carr AJ, Plitas G, Cornish AE, Konopacki C, Prabhakaran S, et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell. 2018;174:1293–1308.e36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Eruslanov E, Neuberger M, Daurkin I, Perrin GQ, Algood C, Dahm P, et al. Circulating and tumor-infiltrating myeloid cell subsets in patients with bladder cancer. Int J Cancer. 2012;130:1109–19.

    Article  CAS  PubMed  Google Scholar 

  9. Jiang H, Yu D, Yang P, Guo R, Kong M, Gao Y, et al. Revealing the transcriptional heterogeneity of organ-specific metastasis in human gastric cancer using single-cell RNA sequencing. Clin Transl Med. 2022;12:e730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sun Y, Wu L, Zhong Y, Zhou K, Hou Y, Wang Z, et al. Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma. Cell. 2021;184:404–421.e16.

    Article  CAS  PubMed  Google Scholar 

  11. Kim N, Kim HK, Lee K, Hong Y, Cho JH, Choi JW, et al. Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma. Nat Commun. 2020;11:2285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Laughney AM, Hu J, Campbell NR, Bakhoum SF, Setty M, Lavallée VP, et al. Regenerative lineages and immune-mediated pruning in lung cancer metastasis. Nat Med. 2020;26:259–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang L, Yu X, Zheng L, Zhang Y, Li Y, Fang Q, et al. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature. 2018;564:268–72.

    Article  CAS  PubMed  Google Scholar 

  14. Bassez A, Vos H, Van Dyck L, Floris G, Arijs I, Desmedt C, et al. A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer. Nat Med. 2021;27:820–32.

    Article  CAS  PubMed  Google Scholar 

  15. Lu B, Ferrandino AF, Flavell RA. Gadd45beta is important for perpetuating cognate and inflammatory signals in T cells. Nat Immunol. 2004;5:38–44.

    Article  CAS  PubMed  Google Scholar 

  16. Kamada T, Togashi Y, Tay C, Ha D, Sasaki A, Nakamura Y, et al. PD-1(+) regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc Natl Acad Sci USA. 2019;116:9999–10008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. van Hooren L, Handgraaf SM, Kloosterman DJ, Karimi E, van Mil L, Gassama AA, et al. CD103(+) regulatory T cells underlie resistance to radio-immunotherapy and impair CD8(+) T cell activation in glioblastoma. Nat Cancer. 2023;4:665–81.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Li X, Sun Z, Peng G, Xiao Y, Guo J, Wu B, et al. Single-cell RNA sequencing reveals a pro-invasive cancer-associated fibroblast subgroup associated with poor clinical outcomes in patients with gastric cancer. Theranostics. 2022;12:620–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang L, Romero P. Metabolic control of CD8(+) T cell fate decisions and antitumor immunity. Trends Mol Med. 2018;24:30–48.

    Article  PubMed  Google Scholar 

  20. Stephen TL, Rutkowski MR, Allegrezza MJ, Perales-Puchalt A, Tesone AJ, Svoronos N, et al. Transforming growth factor β-mediated suppression of antitumor T cells requires FoxP1 transcription factor expression. Immunity 2014;41:427–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wei H, Geng J, Shi B, Liu Z, Wang YH, Stevens AC, et al. Cutting edge: Foxp1 controls naive CD8+ T cell quiescence by simultaneously repressing key pathways in cellular metabolism and cell cycle progression. J Immunol. 2016;196:3537–41.

    Article  CAS  PubMed  Google Scholar 

  22. Papadakis KA, Krempski J, Reiter J, Svingen P, Xiong Y, Sarmento OF, et al. Krüppel-like factor KLF10 regulates transforming growth factor receptor II expression and TGF-β signaling in CD8+ T lymphocytes. Am J Physiol Cell Physiol. 2015;308:C362–71.

    Article  CAS  PubMed  Google Scholar 

  23. Liu P, Li P, Burke S. Critical roles of Bcl11b in T-cell development and maintenance of T-cell identity. Immunol Rev. 2010;238:138–49.

    Article  CAS  PubMed  Google Scholar 

  24. Rindler K, Jonak C, Alkon N, Thaler FM, Kurz H, Shaw LE, et al. Single-cell RNA sequencing reveals markers of disease progression in primary cutaneous T-cell lymphoma. Mol Cancer. 2021;20:124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hu B, Yu M, Ma X, Sun J, Liu C, Wang C, et al. IFNα potentiates Anti-PD-1 efficacy by remodeling glucose metabolism in the hepatocellular carcinoma microenvironment. Cancer Discov. 2022;12:1718–41.

    Article  CAS  PubMed  Google Scholar 

  26. Madden MZ, Rathmell JC. The complex integration of t-cell metabolism and immunotherapy. Cancer Discov. 2021;11:1636–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Amsen D, van Gisbergen K, Hombrink P, van Lier RAW. Tissue-resident memory T cells at the center of immunity to solid tumors. Nat Immunol. 2018;19:538–46.

    Article  CAS  PubMed  Google Scholar 

  28. Japanese Gastric Cancer A. Japanese gastric cancer treatment guidelines 2018 (5th edition). Gastric Cancer. 2021;24:1–21.

    Article  Google Scholar 

  29. Xie C, Zhou X, Liang C, Li X, Ge M, Chen Y, et al. Apatinib triggers autophagic and apoptotic cell death via VEGFR2/STAT3/PD-L1 and ROS/Nrf2/p62 signaling in lung cancer. J Exp Clin Cancer Res. 2021;40:266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Neal JT, Li X, Zhu J, Giangarra V, Grzeskowiak CL, Ju J, et al. Organoid modeling of the tumor immune microenvironment. Cell. 2018;175:1972–1988.e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dos Santos TA, da Silva AC, Silva EB, Gomes PA, EspÃndola JW, Cardoso MV, et al. Antitumor and immunomodulatory activities of thiosemicarbazones and 1,3-Thiazoles in Jurkat and HT-29 cells. Biomed Pharmacother. 2016;82:555–60.

    Article  PubMed  Google Scholar 

  32. García-Mulero S, Alonso MH, Pardo J, Santos C, Sanjuan X, Salazar R, et al. Lung metastases share common immune features regardless of primary tumor origin. J Immunother Cancer. 2020;8:e000491.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wu Y, Yang S, Ma J, Chen Z, Song G, Rao D, et al. Spatiotemporal immune landscape of colorectal cancer liver metastasis at single-cell level. Cancer Discov. 2022;12:134–53.

    Article  CAS  PubMed  Google Scholar 

  34. Karimi E, Yu MW, Maritan SM, Perus LJM, Rezanejad M, Sorin M, et al. Single-cell spatial immune landscapes of primary and metastatic brain tumours. Nature. 2023;614:555–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kemp SB, Carpenter ES, Steele NG, Donahue KL, Nwosu ZC, Pacheco A, et al. Apolipoprotein E promotes immune suppression in pancreatic cancer through NF-κB-mediated production of CXCL1. Cancer Res. 2021;81:4305–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol. 2015;33:495–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, et al. Reversed graph embedding resolves complex single-cell trajectories. Nat Methods. 2017;14:979–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, et al. Inference and analysis of cell-cell communication using CellChat. Nat Commun. 2021;12:1088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–8.

    Article  CAS  PubMed  Google Scholar 

  40. Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernandez-Mateos J, Khan K, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 2018;359:920–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We owe our thanks to Figdraw and Biorender. Figures 1A and 9 created with Figdraw.com. Figures 7F and 8A created with BioRender.com.

Funding

We express our gratitude to the patients for their support, as well as the National Natural Science Foundation of China (81802370, 82172925, 82072575) and the Youth Foundations of Zhongshan Hospital Fudan University (2022ZSQN09, 2023ZYYS-016) for their financial assistance.

Author information

Authors and Affiliations

Authors

Contributions

LTS and ZPF conceived the project, designed the research, and supervised the experiments; DY acquired data together with HKS; ZJY and LML analyzed and interpreted data; YYT, SX, XZH, LSY and ZYJ collected and assembled data; ZMX revised the manuscript for important intellectual content; LTS and ZPF obtained funding and provided technical and material support.

Corresponding authors

Correspondence to Pengfei Zhang or Tianshu Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The Ethical Review Board of Zhongshan Hospital has reviewed this study, with approval NO. B2022-540R, and patients have provided informed consent.

Consent for publication

All authors approved the final manuscript and submission to the journal.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Hu, K., Zhang, J. et al. ScRNA-seq of gastric cancer tissues reveals differences in the immune microenvironment of primary tumors and metastases. Oncogene (2024). https://doi.org/10.1038/s41388-024-03012-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41388-024-03012-5

Search

Quick links