Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DHODH inhibition represents a therapeutic strategy and improves abiraterone treatment in castration-resistant prostate cancer

Abstract

Castration-resistant prostate cancer (CRPC) is an aggressive disease with poor prognosis, and there is an urgent need for more effective therapeutic targets to address this challenge. Here, we showed that dihydroorotate dehydrogenase (DHODH), an enzyme crucial in the pyrimidine biosynthesis pathway, is a promising therapeutic target for CRPC. The transcript levels of DHODH were significantly elevated in prostate tumors and were negatively correlated with the prognosis of patients with prostate cancer. DHODH inhibition effectively suppressed CRPC progression by blocking cell cycle progression and inducing apoptosis. Notably, treatment with DHODH inhibitor BAY2402234 activated androgen biosynthesis signaling in CRPC cells. However, the combination treatment with BAY2402234 and abiraterone decreased intratumoral testosterone levels and induced apoptosis, which inhibited the growth of CWR22Rv1 xenograft tumors and patient-derived xenograft organoids. Taken together, these results establish DHODH as a key player in CRPC and as a potential therapeutic target for advanced prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DHODH overexpression associates with CRPC and is a critical dependency of CRPC cell survival and proliferation.
Fig. 2: DHODH inhibitor inhibits proliferation and survival in CRPC cells.
Fig. 3: DHODH inhibition induces DNA damage, blocks the cell cycle and DNA replication in CRPC cells.
Fig. 4: DHODH inhibitor exerts potent antitumor activity in CRPC in vitro and in vivo.
Fig. 5: DHODH inhibition activates intracrine androgen biosynthesis pathway.
Fig. 6: Combine DHODH inhibitor and abiraterone treatment adds sensitivity of CRPC inhibition and blocks intracrine androgen.

Similar content being viewed by others

Data availability

Data files and specific code used to perform all analyses in this manuscript are available at https://github.com/Wangjunjian-lab/DHODH-inhibition-improves-abiraterone-treatment-in-CRPC/tree/main.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Chen Y, Zhou Q, Hankey W, Fang X, Yuan F. Second generation androgen receptor antagonists and challenges in prostate cancer treatment. Cell Death Dis. 2022;13:632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mohler ML, Sikdar A, Ponnusamy S, Hwang DJ, He Y, Miller DD, et al. An overview of next-generation androgen receptor-targeted therapeutics in development for the treatment of prostate cancer. Int J Mol Sci. 2021;22:2124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Posadas EM, Chi KN, de Wit R, de Jonge MJA, Attard G, Friedlander TW, et al. Pharmacokinetics, safety, and antitumor effect of apalutamide with abiraterone acetate plus prednisone in metastatic castration-resistant prostate cancer: phase Ib study. Clin Cancer Res. 2020;26:3517–24.

    Article  CAS  PubMed  Google Scholar 

  5. Davis ID, Martin AJ, Stockler MR, Begbie S, Chi KN, Chowdhury S, et al. Enzalutamide with standard first-line therapy in metastatic prostate cancer. New Engl J Med. 2019;381:121–31.

    Article  CAS  PubMed  Google Scholar 

  6. Fizazi K, Tran N, Fein L, Matsubara N, Rodriguez-Antolin A, Alekseev BY, et al. Abiraterone plus prednisone in metastatic, castration-sensitive prostate cancer. N Engl J Med. 2017;377:352–60.

    Article  CAS  PubMed  Google Scholar 

  7. Villa E, Ali ES, Sahu U, Ben-Sahra I. Cancer cells tune the signaling pathways to empower de novo synthesis of nucleotides. Cancers. 2019;11:688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Löffler M, Fairbanks LD, Zameitat E, Marinaki AM, Simmonds HA. Pyrimidine pathways in health and disease. Trends Mol Med. 2005;11:430–7.

    Article  PubMed  Google Scholar 

  9. Evans DR, Guy HI. Mammalian pyrimidine biosynthesis: fresh insights into an ancient pathway. J Biol Chem. 2004;279:33035–8.

    Article  CAS  PubMed  Google Scholar 

  10. Scherer S, Oberle SG, Kanev K, Gerullis AK, Wu M, de Almeida GP, et al. Pyrimidine de novo synthesis inhibition selectively blocks effector but not memory T cell development. Nat Immunol. 2023;24:501–15.

    Article  CAS  PubMed  Google Scholar 

  11. Madak JT, Bankhead A 3rd, Cuthbertson CR, Showalter HD, Neamati N. Revisiting the role of dihydroorotate dehydrogenase as a therapeutic target for cancer. Pharmacol Ther. 2019;195:111–31.

    Article  CAS  PubMed  Google Scholar 

  12. Robinson AD, Eich ML, Varambally S. Dysregulation of de novo nucleotide biosynthetic pathway enzymes in cancer and targeting opportunities. Cancer Lett. 2020;470:134–40.

    Article  CAS  PubMed  Google Scholar 

  13. Hauser SL, Bar-Or A, Cohen JA, Comi G, Correale J, Coyle PK, et al. Ofatumumab versus teriflunomide in multiple sclerosis. N Engl J Med. 2020;383:546–57.

    Article  CAS  PubMed  Google Scholar 

  14. Zeng F, Li S, Yang G, Luo Y, Qi T, Liang Y, et al. Design, synthesis, molecular modeling, and biological evaluation of acrylamide derivatives as potent inhibitors of human dihydroorotate dehydrogenase for the treatment of rheumatoid arthritis. Acta Pharm Sin B. 2020;11:795–809.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhou J, Yiying Quah J, Ng Y, Chooi JY, Hui-Min Toh S, Lin B, et al. ASLAN003, a potent dihydroorotate dehydrogenase inhibitor for differentiation of acute myeloid leukemia. Haematologica. 2020;105:2286–97.

    Article  CAS  PubMed  Google Scholar 

  16. Zhou Y, Tao L, Zhou X, Zuo Z, Gong J, Liu X, et al. DHODH and cancer: promising prospects to be explored. Cancer Metab. 2021;9:22.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee H, et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature. 2021;593:586–90.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pal S, Kaplan JP, Nguyen H, Stopka SA, Savani MR, Regan MS, et al. A druggable addiction to de novo pyrimidine biosynthesis in diffuse midline glioma. Cancer Cell. 2022;40:957–972.e910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gwynne WD, Suk Y, Custers S, Mikolajewicz N, Chan JK, Zador Z, et al. Cancer-selective metabolic vulnerabilities in MYC-amplified medulloblastoma. Cancer Cell. 2022;40:1488–1502.e1487.

    Article  CAS  PubMed  Google Scholar 

  20. Christian S, Merz C, Evans L, Gradl S, Seidel H, Friberg A, et al. The novel dihydroorotate dehydrogenase (DHODH) inhibitor BAY 2402234 triggers differentiation and is effective in the treatment of myeloid malignancies. Leukemia. 2019;33:2403–15.

    Article  CAS  PubMed  Google Scholar 

  21. Locke JA, Guns ES, Lubik AA, Adomat HH, Hendy SC, Wood CA, et al. Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer. Cancer Res. 2008;68:6407–15.

    Article  CAS  PubMed  Google Scholar 

  22. Zhao J, Ning S, Lou W, Yang JC, Armstrong CM, Lombard AP, et al. Cross-resistance among next-generation antiandrogen drugs through the AKR1C3/AR-V7 axis in advanced prostate cancer. Mol Cancer Ther. 2020;19:1708–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mitsiades N, Sung CC, Schultz N, Danila DC, He B, Eedunuri VK, et al. Distinct patterns of dysregulated expression of enzymes involved in androgen synthesis and metabolism in metastatic prostate cancer tumors. Cancer Res. 2012;72:6142–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang JC, Xu P, Ning S, Wasielewski LJ, Adomat H, Hwang SH, et al. Novel inhibition of AKR1C3 and androgen receptor axis by PTUPB synergizes enzalutamide treatment in advanced prostate cancer. Oncogene. 2023;42:693–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mostaghel EA, Marck BT, Kolokythas O, Chew F, Yu EY, Schweizer MT, et al. Circulating and intratumoral adrenal androgens correlate with response to abiraterone in men with castration-resistant prostate cancer. Clin Cancer Res. 2021;27:6001–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lorente D, Llacer C, Lozano R, de Velasco G, Romero-Laorden N, Rodrigo M, et al. Prognostic score and benefit from abiraterone in first-line metastatic, castration-resistant prostate cancer. Eur Urol. 2021;80:641–9.

    Article  PubMed  Google Scholar 

  27. Mei Z, Yang T, Liu Y, Gao Y, Hou Z, Zhuang Q, et al. Management of prostate cancer by targeting 3βHSD1 after enzalutamide and abiraterone treatment. Cell Rep Med. 2022;3:100608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Swami U, McFarland TR, Nussenzveig R, Agarwal N. Advanced prostate cancer: treatment advances and future directions. Trends Cancer. 2020;6:702–15.

    Article  CAS  PubMed  Google Scholar 

  29. Teo MY, Rathkopf DE, Kantoff P. Treatment of advanced prostate cancer. Annu Rev Med. 2019;70:479–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gillessen S, Armstrong A, Attard G, Beer TM, Beltran H, Bjartell A, et al. Management of patients with advanced prostate cancer: report from the advanced prostate cancer consensus conference 2021. Eur Urol. 2022;82:115–41.

    Article  CAS  PubMed  Google Scholar 

  31. Dellis AE, Papatsoris AG. Apalutamide: the established and emerging roles in the treatment of advanced prostate cancer. Expert Opin Investig Drugs. 2018;27:553–9.

    Article  CAS  PubMed  Google Scholar 

  32. Shore N, Zurth C, Fricke R, Gieschen H, Graudenz K, Koskinen M, et al. Evaluation of clinically relevant drug-drug interactions and population pharmacokinetics of darolutamide in patients with nonmetastatic castration-resistant prostate cancer: results of pre-specified and post hoc analyses of the phase III ARAMIS trial. Target Oncol. 2019;14:527–39.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Diehl FF, Miettinen TP, Elbashir R, Nabel CS, Darnell AM, Do BT, et al. Nucleotide imbalance decouples cell growth from cell proliferation. Nat Cell Biol. 2022;24:1252–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang C, Zhao Y, Wang L, Guo Z, Ma L, Yang R, et al. De novo pyrimidine biosynthetic complexes support cancer cell proliferation and ferroptosis defence. Nat Cell Biol. 2023;25:836–47.

    Article  CAS  PubMed  Google Scholar 

  35. Ma Y, Zhu Q, Wang X, Liu M, Chen Q, Jiang L, et al. Synthetic lethal screening identifies DHODH as a target for MEN1-mutated tumor cells. Cell Res. 2022;32:596–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Qian Y, Liang X, Kong P, Cheng Y, Cui H, Yan T, et al. Elevated DHODH expression promotes cell proliferation via stabilizing β-catenin in esophageal squamous cell carcinoma. Cell Death Dis. 2020;11:862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schweizer MT, Yu EY. Targeting intratumoral androgens: statins and beyond. Ther Adv Med Oncol. 2016;8:388–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Barnard M, Mostaghel EA, Auchus RJ, Storbeck KH. The role of adrenal derived androgens in castration resistant prostate cancer. J Steroid Biochem Mol Biol. 2020;197:105506.

    Article  CAS  PubMed  Google Scholar 

  39. Hettel D, Sharifi N. HSD3B1 status as a biomarker of androgen deprivation resistance and implications for prostate cancer. Nat Rev Urol. 2018;15:191–6.

    Article  CAS  PubMed  Google Scholar 

  40. Naelitz BD, Sharifi N. Through the looking-glass: reevaluating DHEA metabolism through HSD3B1 genetics. Trends Endocrinol Metab. 2020;31:680–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ye L, Su ZJ, Ge RS. Inhibitors of testosterone biosynthetic and metabolic activation enzymes. Molecules. 2011;16:9983–10001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhou J, Wang Y, Wu D, Wang S, Chen Z, Xiang S, et al. Orphan nuclear receptors as regulators of intratumoral androgen biosynthesis in castration-resistant prostate cancer. Oncogene. 2021;40:2625–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stein MN, Goodin S, Dipaola RS. Abiraterone in prostate cancer: a new angle to an old problem. Clin Cancer Res. 2012;18:1848–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huang JL, Yan XL, Li W, Fan RZ, Li S, Chen J, et al. Discovery of highly potent daphnane diterpenoids uncovers importin-β1 as a druggable vulnerability in castration-resistant prostate cancer. J Am Chem Soc. 2022;144:17522–32.

    Article  CAS  PubMed  Google Scholar 

  45. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Li H, Durbin R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics. 2010;26:589–95.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7:562–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28:511–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ross-Adams H, Lamb AD, Dunning MJ, Halim S, Lindberg J, Massie CM, et al. Integration of copy number and transcriptomics provides risk stratification in prostate cancer: a discovery and validation cohort study. EBioMedicine. 2015;2:1133–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Asangani IA, Dommeti VL, Wang X, Malik R, Cieslik M, Yang R, et al. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature. 2014;510:278–82.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nguyen HG, Yang JC, Kung HJ, Shi XB, Tilki D, Lara PN Jr, et al. Targeting autophagy overcomes enzalutamide resistance in castration-resistant prostate cancer cells and improves therapeutic response in a xenograft model. Oncogene. 2014;33:4521–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Laboratory Animal Center of Sun Yat-sen University for providing the technologies equipment.

Funding

This research was supported by the National Natural Science Foundation of China (82273956), the Guangdong Basic and Applied Basic Research Foundation (2022B1515130008), the Key Research and Development Plan of Guangzhou City (202206080007), and Science and Technology Planning Project of Guangdong Province (2023A0505010013).

Author information

Authors and Affiliations

Authors

Contributions

JJW, CFL, and GPZ conceived of and designed the experiments. SQG, MMM, YFW, and QYW performed the experiments and collected data. DYP and ZFK performed the bioinformatics analysis. SQG, JWZ, JJW, and CFL wrote and edited the manuscript. All authors agree with the published version of the manuscript.

Corresponding authors

Correspondence to Guoping Zhong, Chengfei Liu or Junjian Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, S., Miao, M., Wu, Y. et al. DHODH inhibition represents a therapeutic strategy and improves abiraterone treatment in castration-resistant prostate cancer. Oncogene (2024). https://doi.org/10.1038/s41388-024-03005-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41388-024-03005-4

Search

Quick links