Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phosphohistidine signaling promotes FAK-RB1 interaction and growth factor-independent proliferation of esophageal squamous cell carcinoma

Abstract

Current clinical therapies targeting receptor tyrosine kinases including focal adhesion kinase (FAK) have had limited or no effect on esophageal squamous cell carcinoma (ESCC). Unlike esophageal adenocarcinomas, ESCC acquire glucose in excess of their anabolic need. We recently reported that glucose-induced growth factor-independent proliferation requires the phosphorylation of FAKHis58. Here, we confirm His58 phosphorylation in FAK immunoprecipitates of glucose-stimulated, serum-starved ESCC cells using antibodies specific for 3-phosphohistidine and mass spectrometry. We also confirm a role for the histidine kinase, NME1, in glucose-induced FAKpoHis58 and ESCC cell proliferation, correlating with increased levels of NME1 in ESCC tumors versus normal esophageal tissues. Unbiased screening identified glucose-induced retinoblastoma transcriptional corepressor 1 (RB1) binding to FAK, mediated through a “LxCxE” RB1-binding motif in FAK’s FERM domain. Importantly, in the absence of growth factors, glucose increased FAK scaffolding of RB1 in the cytoplasm, correlating with increased ESCC G1→S phase transition. Our data strongly suggest that this glucose-mediated mitogenic pathway is novel and represents a unique targetable opportunity in ESCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Glucose (Glc) induces G1 to S/G2/M phase transition of ESCC cells.
Fig. 2: Glucose (Glc) induces histidine phosphorylation of FAK and proliferation.
Fig. 3: Glucose (Glc) promotes NME1 modulation of pHis-FAK and proliferation.
Fig. 4: Glucose (Glc) modulates PP2A, pHis and proliferation.
Fig. 5: Glucose (Glc) promotes FAK-RB1 interaction.
Fig. 6: NME1 expression and FAK-RB1 interaction are increased in ESCC.
Fig. 7: Glucose-induced NME1/PP2A-pHis-FAK-RB1 signaling and tumor growth.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Callahan R, Hurvitz S. Human epidermal growth factor receptor-2-positive breast cancer: current management of early, advanced, and recurrent disease. Curr Opin Obstet Gynecol. 2011;23:37–43.

    Article  Google Scholar 

  2. Engelman JA, Janne PA. Mechanisms of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Clin Cancer Res. 2008;14:2895–9.

    Article  Google Scholar 

  3. Kassouf W, Dinney CP, Brown G, McConkey DJ, Diehl AJ, Bar-Eli M, et al. Uncoupling between epidermal growth factor receptor and downstream signals defines resistance to the antiproliferative effect of Gefitinib in bladder cancer cells. Cancer Res. 2005;65:10524–35.

    Article  CAS  Google Scholar 

  4. Sforza V, Martinelli E, Ciardiello F, Gambardella V, Napolitano S, Martini G, et al. Mechanisms of resistance to anti-epidermal growth factor receptor inhibitors in metastatic colorectal cancer. World J Gastroenterol. 2016;22:6345–61.

    Article  Google Scholar 

  5. Yamaoka T, Ohba M, Ohmori T. Molecular-targeted therapies for epidermal growth factor receptor and its resistance mechanisms. Int J Mol Sci. 2017;18:2420 (1-22).

  6. Zhu J, Thompson CB. Metabolic regulation of cell growth and proliferation. Nat Rev Mol Cell Biol. 2019;20:436–50.

    Article  CAS  Google Scholar 

  7. Hotta M, Minamimoto R, Yamada K, Nohara K, Soma D, Nakajima K, et al. Efficacy of 4’-[methyl-11C] thiothymidine PET/CT before and after neoadjuvant therapy for predicting therapeutic responses in patients with esophageal cancer: a pilot study. EJNMMI Res. 2019;9:10.

    Article  Google Scholar 

  8. Mantziari S, Pomoni A, Prior JO, Winiker M, Allemann P, Demartines N, et al. (18)F- FDG PET/CT-derived parameters predict clinical stage and prognosis of esophageal cancer. BMC Med Imaging. 2020;20:7.

    Article  Google Scholar 

  9. Schreurs LM, Janssens AC, Groen H, Fockens P, van Dullemen HM, van Berge Henegouwen MI, et al. Value of EUS in determining curative resectability in reference to CT and FDG-PET: the optimal sequence in preoperative staging of esophageal cancer? Ann Surg Oncol. 2016;23:1021–8.

    Article  CAS  Google Scholar 

  10. Lim CH, Park YJ, Shin M, Cho YS, Choi JY, Lee KH, et al. Tumor SUVs on 18F-FDG PET/CT and aggressive pathological features in esophageal squamous cell carcinoma. Clin Nucl Med. 2020;45:e128–e133.

    Article  Google Scholar 

  11. Gillies RS, Middleton MR, Maynard ND, Bradley KM, Gleeson FV. Additional benefit of (1)(8)F-fluorodeoxyglucose integrated positron emission tomography/computed tomography in the staging of oesophageal cancer. Eur Radiol. 2011;21:274–80.

    Article  CAS  Google Scholar 

  12. Furukawa T, Hamai Y, Hihara J, Emi M, Yamakita I, Ibuki Y, et al. Clinical significance of FDG-PET to predict pathologic tumor invasion and lymph node metastasis of superficial esophageal squamous cell carcinoma. Ann Surg Oncol. 2016;23:4086–92.

    Article  Google Scholar 

  13. Yap WK, Chang YC, Hsieh CH, Chao YK, Chen CC, Shih MC, et al. Favorable versus unfavorable prognostic groups by post-chemoradiation FDG-PET imaging in node-positive esophageal squamous cell carcinoma patients treated with definitive chemoradiotherapy. Eur J Nucl Med Mol imaging. 2018;45:689–98.

    Article  CAS  Google Scholar 

  14. Hamai Y, Emi M, Ibuki Y, Murakami Y, Nishibuchi I, Nagata Y, et al. Predictions of pathological features and recurrence based on FDG-PET findings of esophageal squamous cell carcinoma after trimodal therapy. Ann surgical Oncol. 2020;27:4422–30.

    Article  Google Scholar 

  15. Goodwin J, Neugent ML, Lee SY, Choe JH, Choi H, Jenkins DMR, et al. The distinct metabolic phenotype of lung squamous cell carcinoma defines selective vulnerability to glycolytic inhibition. Nat Commun. 2017;8:15503.

    Article  CAS  Google Scholar 

  16. Vander Heiden MG, Locasale JW, Swanson KD, Sharfi H, Heffron GJ, Amador-Noguez D, et al. Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science. 2010;329:1492–9.

    Article  Google Scholar 

  17. He X, Cheng X, Ding J, Xiong M, Chen B, Cao G. Hyperglycemia induces miR-26-5p down-regulation to overexpress PFKFB3 and accelerate epithelial-mesenchymal transition in gastric cancer. Bioengineered. 2022;13:2902–17.

    Article  CAS  Google Scholar 

  18. Ghosh A, Shieh JJ, Pan CJ, Chou JY. Histidine 167 is the phosphate acceptor in glucose-6-phosphatase-beta forming a phosphohistidine enzyme intermediate during catalysis. J Biol Chem. 2004;279:12479–83.

    Article  CAS  Google Scholar 

  19. Kalagiri R, Hunter T. The many ways that nature has exploited the unusual structural and chemical properties of phosphohistidine for use in proteins. Biochemical J. 2021;478:3575–96.

    Article  CAS  Google Scholar 

  20. Adam K, Lesperance J, Hunter T, Zage PE. The potential functional roles of NME1 histidine kinase activity in neuroblastoma pathogenesis. Int J Mol Sci. 2020;21:3319 (1-19).

  21. Hindupur SK, Colombi M, Fuhs SR, Matter MS, Guri Y, Adam K, et al. The protein histidine phosphatase LHPP is a tumour suppressor. Nature. 2018;555:678–82.

    Article  CAS  Google Scholar 

  22. Zhang J, Gelman IH, Katsuta E, Liang Y, Wang X, Li J, et al. Glucose drives growth factor-independent esophageal cancer proliferation via phosphohistidine-focal adhesion kinase signaling. Cell Mol Gastroenterol Hepatol. 2019;8:37–60.

    Article  Google Scholar 

  23. Zhang J, Gao Q, Zhou Y, Dier U, Hempel N, Hochwald SN. Focal adhesion kinase-promoted tumor glucose metabolism is associated with a shift of mitochondrial respiration to glycolysis. Oncogene. 2016;35:1926–42.

    Article  CAS  Google Scholar 

  24. Lee BY, Timpson P, Horvath LG, Daly RJ. FAK signaling in human cancer as a target for therapeutics. Pharmacol therapeutics. 2015;146:132–49.

    Article  CAS  Google Scholar 

  25. Schober M, Fuchs E. Tumor-initiating stem cells of squamous cell carcinomas and their control by TGF-beta and integrin/focal adhesion kinase (FAK) signaling. Proc Natl Acad Sci USA. 2011;108:10544–9.

    Article  CAS  Google Scholar 

  26. Sieg DJ, Hauck CR, Ilic D, Klingbeil CK, Schaefer E, Damsky CH, et al. FAK integrates growth-factor and integrin signals to promote cell migration. Nat Cell Biol. 2000;2:249–56.

    Article  CAS  Google Scholar 

  27. Kim HY, Ahn BY, Cho Y. Structural basis for the inactivation of retinoblastoma tumor suppressor by SV40 large T antigen. EMBO J. 2001;20:295–304.

    Article  CAS  Google Scholar 

  28. Lee JO, Russo AA, Pavletich NP. Structure of the retinoblastoma tumour-suppressor pocket domain bound to a peptide from HPV E7. Nature. 1998;391:859–65.

    Article  CAS  Google Scholar 

  29. Palopoli N, Gonzalez Foutel NS, Gibson TJ, Chemes LB. Short linear motif core and flanking regions modulate retinoblastoma protein binding affinity and specificity. Protein Eng Des Sel. 2018;31:69–77.

    Article  CAS  Google Scholar 

  30. Zhang C, Stockwell SR, Elbanna M, Ketteler R, Freeman J, Al-Lazikani B, et al. Signalling involving MET and FAK supports cell division independent of the activity of the cell cycle-regulating CDK4/6 kinases. Oncogene. 2019;38:5905–20.

    Article  CAS  Google Scholar 

  31. Esteban-Villarrubia J, Soto-Castillo JJ, Pozas J, San Roman-Gil M, Orejana-Martin I, Torres-Jimenez J, et al. Tyrosine kinase receptors in oncology. Int J Mol Sci. 2020;21:8529 (1-48).

  32. Mushtaq U, Bashir M, Nabi S, Khanday FA. Epidermal growth factor receptor and integrins meet redox signaling through P66shc and Rac1. Cytokine. 2021;146:155625.

    Article  CAS  Google Scholar 

  33. Phan P, Saikia BB, Sonnaila S, Agrawal S, Alraawi Z, Kumar TKS, et al. The saga of endocrine FGFs. Cells. 2021;10:2418 (1-38).

  34. Postel EH, Ferrone CA. Nucleoside diphosphate kinase enzyme activity of NM23-H2/PuF is not required for its DNA binding and in vitro transcriptional functions. J Biol Chem. 1994;269:8627–30.

    Article  CAS  Google Scholar 

  35. Zhu J, Tseng YH, Kantor JD, Rhodes CJ, Zetter BR, Moyers JS, et al. Interaction of the Ras-related protein associated with diabetes rad and the putative tumor metastasis suppressor NM23 provides a novel mechanism of GTPase regulation. Proc Natl Acad Sci USA. 1999;96:14911–8.

    Article  CAS  Google Scholar 

  36. Su H, Hu N, Yang HH, Wang C, Takikita M, Wang QH, et al. Global gene expression profiling and validation in esophageal squamous cell carcinoma and its association with clinical phenotypes. Clin Cancer Res. 2011;17:2955–66.

    Article  CAS  Google Scholar 

  37. Hu N, Clifford RJ, Yang HH, Wang C, Goldstein AM, Ding T, et al. Genome wide analysis of DNA copy number neutral loss of heterozygosity (CNNLOH) and its relation to gene expression in esophageal squamous cell carcinoma. BMC Genomics. 2010;11:576.

    Article  Google Scholar 

  38. Lapek JD Jr., Tombline G, Friedman AE. Mass spectrometry detection of histidine phosphorylation on NM23-H1. J Proteome Res. 2011;10:751–5.

    Article  CAS  Google Scholar 

  39. Cavalier MC, Kim SG, Neau D, Lee YH. Molecular basis of the fructose-2,6-bisphosphatase reaction of PFKFB3: transition state and the C-terminal function. Proteins. 2012;80:1143–53.

    Article  CAS  Google Scholar 

  40. Wieland T, Attwood PV. Alterations in reversible protein histidine phosphorylation as intracellular signals in cardiovascular disease. Front Pharmacol. 2015;6:173.

    Article  Google Scholar 

  41. Chellappan S, Kraus VB, Kroger B, Munger K, Howley PM, Phelps WC, et al. Adenovirus E1A, simian virus 40 tumor antigen, and human papillomavirus E7 protein share the capacity to disrupt the interaction between transcription factor E2F and the retinoblastoma gene product. Proc Natl Acad Sci USA. 1992;89:4549–53.

    Article  CAS  Google Scholar 

  42. Zhang W, Lei C, Fan J, Wang J. miR-18a promotes cell proliferation of esophageal squamous cell carcinoma cells by increasing cylin D1 via regulating PTEN-PI3K-AKT-mTOR signaling axis. Biochem Biophys Res Commun. 2016;477:144–9.

    Article  CAS  Google Scholar 

  43. Beca F, Pereira M, Cameselle-Teijeiro JF, Martins D, Schmitt F. Altered PPP2R2A and Cyclin D1 expression defines a subgroup of aggressive luminal-like breast cancer. BMC Cancer. 2015;15:285.

    Article  Google Scholar 

  44. Geng Y, Yu Q, Sicinska E, Das M, Bronson RT, Sicinski P. Deletion of the p27Kip1 gene restores normal development in cyclin D1-deficient mice. Proc Natl Acad Sci USA. 2001;98:194–9.

    Article  CAS  Google Scholar 

  45. Ikeguchi M, Sakatani T, Ueta T, Kaibara N. Cyclin D1 expression and retinoblastoma gene protein (pRB) expression in esophageal squamous cell carcinoma. J Cancer Res Clin Oncol. 2001;127:531–6.

    Article  CAS  Google Scholar 

  46. Ma WW. Development of focal adhesion kinase inhibitors in cancer therapy. Anti-Cancer Agents Med Chem. 2011;11:638–42.

    Article  CAS  Google Scholar 

  47. Hochwald JS, Zhang J. Glucose oncometabolism of esophageal cancer. Anti-Cancer Agents Med Chem. 2017;17:385–94.

    Article  CAS  Google Scholar 

  48. Kim SY, Kawaguchi T, Yan L, Young J, Qi Q, Takabe K. Clinical relevance of microRNA expressions in breast cancer validated using the cancer genome atlas (TCGA). Ann Surg Oncol. 2017;24:2943–9.

    Article  Google Scholar 

  49. Kee JM, Oslund RC, Perlman DH, Muir TW. A pan-specific antibody for direct detection of protein histidine phosphorylation. Nat Chem Biol. 2013;9:416–21.

    Article  CAS  Google Scholar 

  50. Kim SC, Chen Y, Mirza S, Xu Y, Lee J, Liu P, et al. A clean, more efficient method for in-solution digestion of protein mixtures without detergent or urea. J Proteome Res. 2006;5:3446–52.

    Article  CAS  Google Scholar 

  51. Zu XL, Besant PG, Imhof A, Attwood PV. Mass spectrometric analysis of protein histidine phosphorylation. Amino Acids. 2007;32:347–57.

    Article  CAS  Google Scholar 

  52. An B, Zhang M, Johnson RW, Qu J. Surfactant-aided precipitation/on-pellet-digestion (SOD) procedure provides robust and rapid sample preparation for reproducible, accurate and sensitive LC/MS quantification of therapeutic protein in plasma and tissues. Anal Chem. 2015;87:4023–9.

    Article  CAS  Google Scholar 

  53. Oslund RC, Kee JM, Couvillon AD, Bhatia VN, Perlman DH, Muir TW. A phosphohistidine proteomics strategy based on elucidation of a unique gas-phase phosphopeptide fragmentation mechanism. J Am Chem Soc. 2014;136:12899–911.

    Article  CAS  Google Scholar 

  54. Shen X, Shen S, Li J, Hu Q, Nie L, Tu C, et al. An IonStar experimental strategy for MS1 Ion current-based quantification using ultrahigh-field orbitrap: reproducible, in-depth, and accurate protein measurement in large cohorts. J Proteome Res. 2017;16:2445–56.

    Article  CAS  Google Scholar 

  55. Wang X, Niu J, Li J, Shen X, Shen S, Straubinger RM, et al. Temporal effects of combined birinapant and paclitaxel on pancreatic cancer cells investigated via large-scale, ion-current-based quantitative proteomics (IonStar). Mol Cell Proteom. 2018;17:655–71.

    Article  CAS  Google Scholar 

Download references

Funding

Roswell Park Comprehensive Cancer Center Alliance Foundation Grant (SH and JZ).

Author information

Authors and Affiliations

Authors

Contributions

JZ: Designed and performed experiments and prepared the manuscript. IG: TCGA database search and analysis, study design, data interpretation and critical revision of manuscript. JQ: Designed MS study and interpreted MS results. SH: Study design, data analysis/interpretation and manuscript preparation.

Corresponding author

Correspondence to Steven N. Hochwald.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Gelman, I.H., Qu, J. et al. Phosphohistidine signaling promotes FAK-RB1 interaction and growth factor-independent proliferation of esophageal squamous cell carcinoma. Oncogene 42, 449–460 (2023). https://doi.org/10.1038/s41388-022-02568-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02568-4

Search

Quick links