Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

OGT regulated O-GlcNAcylation promotes papillary thyroid cancer malignancy via activating YAP

Abstract

The incidence of thyroid cancer is growing rapidly during the past decades worldwide. Although most thyroid tumors are curable, some patients diagnosed with distant metastases are associated with poor prognosis. The molecular mechanisms underlying these cases are still largely unknown. Here we found that the upregulated O-Linked N-Acetylglucosamine Transferase (OGT) expression and O-GlcNAcylation (O-GlcNAc) modification in papillary thyroid cancer (PTC) were essential in tumor growth and metastasis. Mass spectrometry analysis showed that YAP was the effector protein modified by OGT. In details, YAP Ser109 O-GlcNAcylation promoted the malignant phenotypes in PTC cells by inducing YAP Ser127 dephosphorylation and activation. Our work clearly showed the critical role of OGT and YAP played in PTC tumors and made it possible for us to seek the clinical potential of manipulating OGT/YAP activity in PTC targeted therapies. These findings also confirmed OGT worked in collaboration with classical Hippo pathway kinases as an upstream regulator of YAP in PTC tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Upregulation of O-GlcNAcylation is associated with clinicopathological features in papillary thyroid cancer tissues.
Fig. 2: OGT dysregulations modulate PTC cell proliferation, migration, and invasion.
Fig. 3: OGT stably interacts with and O-GlcNAcylates YAP.
Fig. 4: O-GlcNAcylation regulates YAP translocation and stability via phosphorylation.
Fig. 5: YAP O-GlcNAcylation mainly occurs at Serine109 site.
Fig. 6: O-GlcNAcylation-mediated PTC cell malignancy is dependent on YAP.
Fig. 7: OGT promotes PTC malignancy via YAP in vivo.
Fig. 8: Schematic model showing that O-GlcNAc/YAP signaling promotes tumor malignancy in PTC.

Similar content being viewed by others

References

  1. Lim H, Devesa SS, Sosa JA, Check D, Kitahara CM. Trends in thyroid cancer incidence and mortality in the United States, 1974-2013. JAMA. 2017;317:1338–48.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Xing M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer. 2013;13:184–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gonzalez-Gonzalez R, Bologna-Molina R, Carreon-Burciaga RG, Gomezpalacio-Gastelum M, Molina-Frechero N, Salazar-Rodriguez S. Papillary thyroid carcinoma: differential diagnosis and prognostic values of its different variants: review of the literature. ISRN Oncol. 2011;2011:915925.

    PubMed  PubMed Central  Google Scholar 

  4. Coca-Pelaz A, Shah JP, Hernandez-Prera JC, Ghossein RA, Rodrigo JP, Hartl DM, et al. Papillary thyroid cancer-aggressive variants and impact on management: a narrative review. Adv Ther. 2020;37:3112–28.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7–30.

    Article  PubMed  Google Scholar 

  6. Carling T, Udelsman R. Thyroid cancer. Annu Rev Med. 2014;65:125–37.

    Article  CAS  PubMed  Google Scholar 

  7. Haltiwanger RS, Holt GD, Hart GW. Enzymatic addition of O-GlcNAc to nuclear and cytoplasmic proteins. Identification of a uridine diphospho-N-acetylglucosamine:peptide beta-N-acetylglucosaminyltransferase. J Biol Chem. 1990;265:2563–8.

    Article  CAS  PubMed  Google Scholar 

  8. Dong DL, Hart GW. Purification and characterization of an O-GlcNAc selective N-acetyl-beta-D-glucosaminidase from rat spleen cytosol. J Biol Chem. 1994;269:19321–30.

    Article  CAS  PubMed  Google Scholar 

  9. Fardini Y, Dehennaut V, Lefebvre T, Issad T. O-GlcNAcylation: a new cancer hallmark? Front Endocrinol. 2013;4:99.

    Article  Google Scholar 

  10. Ma Z, Vosseller K. O-GlcNAc in cancer biology. Amino Acids. 2013;45:719–33.

    Article  CAS  PubMed  Google Scholar 

  11. Zeidan Q, Hart GW. The intersections between O-GlcNAcylation and phosphorylation: implications for multiple signaling pathways. J Cell Sci. 2010;123:13–22.

    Article  CAS  PubMed  Google Scholar 

  12. Cheng YU, Li H, Li J, Li J, Gao Y, Liu B. O-GlcNAcylation enhances anaplastic thyroid carcinoma malignancy. Oncol Lett. 2016;12:572–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang P, Wang C, Ma T, You S. O-GlcNAcylation enhances the invasion of thyroid anaplastic cancer cells partially by PI3K/Akt1 pathway. Onco Targets Ther. 2015;8:3305–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Moroishi T, Hansen CG, Guan KL. The emerging roles of YAP and TAZ in cancer. Nat Rev Cancer. 2015;15:73–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu Z, Guan KL. Hippo signaling in embryogenesis and development. Trends Biochem Sci. 2021;46:51–63.

    Article  CAS  PubMed  Google Scholar 

  16. Meng Z, Moroishi T, Guan KL. Mechanisms of Hippo pathway regulation. Genes Dev. 2016;30:1–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Harvey KF, Zhang X, Thomas DM. The Hippo pathway and human cancer. Nat Rev Cancer. 2013;13:246–57.

    Article  CAS  PubMed  Google Scholar 

  18. Johnson R, Halder G. The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov. 2014;13:63–79.

    Article  CAS  PubMed  Google Scholar 

  19. Liu Z, Zeng W, Wang S, Zhao X, Guo Y, Yu P, et al. A potential role for the Hippo pathway protein, YAP, in controlling proliferation, cell cycle progression, and autophagy in BCPAP and KI thyroid papillary carcinoma cells. Am J Transl Res. 2017;9:3212–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhao B, Li L, Lei Q, Guan KL. The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev. 2010;24:862–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao B, Li L, Tumaneng K, Wang CY, Guan KL. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev. 2010;24:72–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moon S, Kim W, Kim S, Kim Y, Song Y, Bilousov O, et al. Phosphorylation by NLK inhibits YAP-14-3-3-interactions and induces its nuclear localization. EMBO Rep. 2017;18:61–71.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang X, Qiao Y, Wu Q, Chen Y, Zou S, Liu X, et al. The essential role of YAP O-GlcNAcylation in high-glucose-stimulated liver tumorigenesis. Nat Commun. 2017;8:15280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Peng C, Zhu Y, Zhang W, Liao Q, Chen Y, Zhao X, et al. Regulation of the Hippo-YAP pathway by glucose sensor O-GlcNAcylation. Mol Cell. 2017;68:591–604 e5.

    Article  CAS  PubMed  Google Scholar 

  25. Ferrer CM, Sodi VL, Reginato MJ. O-GlcNAcylation in cancer biology: linking metabolism and signaling. J Mol Biol. 2016;428:3282–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Singh JP, Zhang K, Wu J, Yang X. O-GlcNAc signaling in cancer metabolism and epigenetics. Cancer Lett. 2015;356:244–50.

    Article  CAS  PubMed  Google Scholar 

  27. Makwana V, Ryan P, Patel B, Dukie SA, Rudrawar S. Essential role of O-GlcNAcylation in stabilization of oncogenic factors. Biochim Biophys Acta Gen Subj. 2019;1863:1302–17.

    Article  CAS  PubMed  Google Scholar 

  28. Kim SH, Kim YS, Choi MY, Kim M, Yang JH, Park HO, et al. O-linked-N-acetylglucosamine transferase is associated with metastatic spread of human papillomavirus E6 and E7 oncoproteins to the lungs of mice. Biochem Biophys Res Commun. 2017;483:793–802.

    Article  CAS  PubMed  Google Scholar 

  29. Lin YC, Lin CH, Yeh YC, Ho HL, Wu YC, Chen MY, et al. High O-linked N-acetylglucosamine transferase expression predicts poor survival in patients with early stage lung adenocarcinoma. Oncotarget 2018;9:31032–44.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zheng W, Li H, Zhang H, Zhang C, Zhu Z, Liang H, et al. Long noncoding RNA RHPN1-AS1 promotes colorectal cancer progression via targeting miR-7-5p/OGT axis. Cancer Cell Int. 2020;20:54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Seo HG, Kim HB, Yoon JY, Kweon TH, Park YS, Kang J, et al. Mutual regulation between OGT and XIAP to control colon cancer cell growth and invasion. Cell Death Dis. 2020;11:815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jiang MZ, Xu B, Li XW, Shang YL, Chu Y, Wang WJ, et al. O-GlcNAcylation promotes colorectal cancer metastasis via the miR-101-O-GlcNAc/EZH2 regulatory feedback circuit. Oncogene. 2019;38:301–16.

    Article  CAS  PubMed  Google Scholar 

  33. Cao B, Duan M, Xing Y, Liu C, Yang F, Li Y, et al. O-GlcNAc transferase activates stem-like cell potential in hepatocarcinoma through O-GlcNAcylation of eukaryotic initiation factor 4E. J Cell Mol Med. 2019;23:2384–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pepe F, Pagotto S, Soliman S, Rossi C, Lanuti P, Braconi C, et al. Regulation of miR-483-3p by the O-linked N-acetylglucosamine transferase links chemosensitivity to glucose metabolism in liver cancer cells. Oncogenesis. 2017;6:e328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xu W, Zhang X, Wu JL, Fu L, Liu K, Liu D, et al. O-GlcNAc transferase promotes fatty liver-associated liver cancer through inducing palmitic acid and activating endoplasmic reticulum stress. J Hepatol. 2017;67:310–20.

    Article  CAS  PubMed  Google Scholar 

  36. Zhu G, Tao T, Zhang D, Liu X, Qiu H, Han L, et al. O-GlcNAcylation of histone deacetylases 1 in hepatocellular carcinoma promotes cancer progression. Glycobiology. 2016;26:820–33.

    Article  CAS  PubMed  Google Scholar 

  37. Duan F, Wu H, Jia D, Wu W, Ren S, Wang L, et al. O-GlcNAcylation of RACK1 promotes hepatocellular carcinogenesis. J Hepatol. 2018;68:1191–202.

    Article  CAS  PubMed  Google Scholar 

  38. Akella NM, Le Minh G, Ciraku L, Mukherjee A, Bacigalupa ZA, Mukhopadhyay D, et al. O-GlcNAc transferase regulates cancer stem-like potential of breast cancer cells. Mol Cancer Res. 2020;18:585–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ferrer CM, Lu TY, Bacigalupa ZA, Katsetos CD, Sinclair DA, Reginato MJ. O-GlcNAcylation regulates breast cancer metastasis via SIRT1 modulation of FOXM1 pathway. Oncogene. 2017;36:559–69.

    Article  CAS  PubMed  Google Scholar 

  40. Xu Y, Sheng X, Zhao T, Zhang L, Ruan Y, Lu H. O-GlcNAcylation of MEK2 promotes the proliferation and migration of breast cancer cells. Glycobiology. 2020.

  41. Itkonen HM, Poulose N, Steele RE, Martin SES, Levine ZG, Duveau DY, et al. Inhibition of O-GlcNAc transferase renders prostate cancer cells dependent on CDK9. Mol Cancer Res. 2020;18:1512–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Itkonen HM, Urbanucci A, Martin SE, Khan A, Mathelier A, Thiede B, et al. High OGT activity is essential for MYC-driven proliferation of prostate cancer cells. Theranostics 2019;9:2183–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jin L, Yuan F, Dai G, Yao Q, Xiang H, Wang L, et al. Blockage of O-linked GlcNAcylation induces AMPK-dependent autophagy in bladder cancer cells. Cell Mol Biol Lett. 2020;25:17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang L, Chen S, Zhang Z, Zhang J, Mao S, Zheng J, et al. Suppressed OGT expression inhibits cell proliferation while inducing cell apoptosis in bladder cancer. BMC Cancer. 2018;18:1141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen R, Xie R, Meng Z, Ma S, Guan KL. STRIPAK integrates upstream signals to initiate the Hippo kinase cascade. Nat Cell Biol. 2019;21:1565–77.

    Article  CAS  PubMed  Google Scholar 

  46. Aragona M, Panciera T, Manfrin A, Giulitti S, Michielin F, Elvassore N, et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 2013;154:1047–59.

    Article  CAS  PubMed  Google Scholar 

  47. Liu Z, Zeng W, Maimaiti Y, Ming J, Guo Y, Liu Y, et al. High expression of Yes-activated protein-1 in papillary thyroid carcinoma correlates with poor prognosis. Appl Immunohistochem Mol Morphol. 2019;27:59–64.

    Article  CAS  PubMed  Google Scholar 

  48. Saiselet M, Floor S, Tarabichi M, Dom G, Hebrant A, van Staveren WC, et al. Thyroid cancer cell lines: an overview. Front Endocrinol. 2012;3:133.

    Article  CAS  Google Scholar 

  49. Di Domenico F, Lanzillotta C, Tramutola A. Therapeutic potential of rescuing protein O-GlcNAcylation in tau-related pathologies. Expert Rev Neurother. 2019;19:1–3.

    Article  PubMed  CAS  Google Scholar 

  50. Gloster TM, Zandberg WF, Heinonen JE, Shen DL, Deng L, Vocadlo DJ. Hijacking a biosynthetic pathway yields a glycosyltransferase inhibitor within cells. Nat Chem Biol. 2011;7:174–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nagashima S, Bao Y, Hata Y. The Hippo pathway as drug targets in cancer therapy and regenerative medicine. Curr Drug Targets. 2017;18:447–54.

    Article  CAS  PubMed  Google Scholar 

  52. Ortiz-Meoz RF, Jiang J, Lazarus MB, Orman M, Janetzko J, Fan C, et al. A small molecule that inhibits OGT activity in cells. ACS Chem Biol. 2015;10:1392–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pobbati AV, Han X, Hung AW, Weiguang S, Huda N, Chen GY, et al. Targeting the central pocket in human transcription factor TEAD as a potential cancer therapeutic strategy. Structure. 2015;23:2076–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grant no. 81602326 from the National Nature Science Foundation of China and Science and Technology Commission of Shanghai Municipality (No. 15411952503).

Author information

Authors and Affiliations

Authors

Contributions

XYL, ZMW, XPL, and QZ designed the study. XYL and ZMW performed the experiments and drafted the manuscript. JH, YTJ, and HYW analyzed the data. CYC, YC and FG collected clinical samples and patients’ information. CJH and XPL evaluated the histological features. XPL and QZ supervised the study and critically revised the manuscript. All authors have reviewed and approved the paper.

Corresponding authors

Correspondence to Xiuping Liu or Qiang Zou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wu, Z., He, J. et al. OGT regulated O-GlcNAcylation promotes papillary thyroid cancer malignancy via activating YAP. Oncogene 40, 4859–4871 (2021). https://doi.org/10.1038/s41388-021-01901-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01901-7

This article is cited by

Search

Quick links