Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

BRD4 inhibition sensitizes cervical cancer to radiotherapy by attenuating DNA repair

Abstract

Cisplatin-based chemoradiotherapy is the recommended treatment for local advanced cervical cancer, but radioresistance remains one of the most important and unresolved clinical problems. Investigations have revealed aberrant epigenetic modifications as one of the chief culprits for the development of radioresistance. Here, we attempt to identify a radiosensitizer from an epigenetic drug synergy screen and explore the underlying mechanism. We integrated epigenetic inhibitors and radiotherapy in cervical cancer cell lines to identify potential radiosensitizers. We further verified the sensitization effect of the drug and the function of its target gene both in vitro and in vivo. Finally, we validated the clinical significance of its target gene in clinical cervical cancer specimens. We identified JQ1, a BRD4 inhibitor, as a potent radiosensitizer. Functional assays demonstrated that repressing BRD4 activity led to significant radiosensitization and potentiation of DNA damage in cervical cancer cell lines. By using RNA-seq to determine JQ1-mediated changes in transcription, we identified RAD51AP1 as a major BRD4 target gene involved in radiosensitivity. A dual-luciferase reporter assay and ChIP-qPCR showed that BRD4 binds to the promoter region of RAD51AP1 and promotes its transcription, whereas this activity was attenuated by BRD4 inhibition. The in vivo experiments also suggested a synergy between BRD4 inhibition and radiotherapy. High BRD4 expression was found to be related to a worse prognosis and radiation resistance. BRD4 inhibition sensitizes cervical cancer to radiotherapy by inhibiting RAD51AP1 transcription. The combination of JQ1 with radiotherapy merits further evaluation as a therapeutic strategy for improving local control in cervical cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Epigenetic inhibitors screening identifies JQ1 as a potent radiosensitizer.
Fig. 2: JQ1 enhances IR-induced apoptosis and DNA damage.
Fig. 3: Knockdown of BRD4 sensitizes cervical cancer to radiotherapy.
Fig. 4: JQ1 represses transcription of RAD51AP1 via BRD4 inhibition.
Fig. 5: RAD51AP1 downregulation sensitizes cervical cancer to radiotherapy, while RAD51AP1 overexpression rescues BRD4 inhibition-induced phenotype.
Fig. 6: BRD4 expression predicts prognosis of uterine cervical cancer.

Similar content being viewed by others

References

  1. Cao L, Wen H, Feng Z, Han X, Wu X. Distinctive clinicopathologic characteristics and prognosis for different histologic subtypes of early cervical cancer. Int J Gynecol Cancer. 2019;29:1244–51.

    Article  PubMed  Google Scholar 

  2. Marie-Egyptienne DT, Lohse I, Hill RP. Cancer stem cells, the epithelial to mesenchymal transition (EMT) and radioresistance: potential role of hypoxia. Cancer Lett. 2013;341:63–72.

    Article  CAS  PubMed  Google Scholar 

  3. Krause M, Dubrovska A, Linge A, Baumann M. Cancer stem cells: Radioresistance, prediction of radiotherapy outcome and specific targets for combined treatments. Adv Drug Deliv Rev. 2017;109:63–73.

    Article  CAS  PubMed  Google Scholar 

  4. Barker HE, Paget JT, Khan AA, Harrington KJ. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer. 2015;15:409–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Berdasco M, Esteller M. Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell. 2010;19:698–711.

    Article  CAS  PubMed  Google Scholar 

  6. Easwaran H, Tsai HC, Baylin SB. Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol Cell. 2014;54:716–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shaffer SM, Dunagin MC, Torborg SR, Torre EA, Emert B, Krepler C, et al. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature. 2017;546:431–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bates SE. Epigenetic therapies for cancer. N Engl J Med. 2020;383:650–63.

    Article  CAS  PubMed  Google Scholar 

  9. Glasspool RM, Brown R, Gore ME, Rustin GJ, McNeish IA, Wilson RH, et al. A randomised, phase II trial of the DNA-hypomethylating agent 5-aza-2’-deoxycytidine (decitabine) in combination with carboplatin vs carboplatin alone in patients with recurrent, partially platinum-sensitive ovarian cancer. Br J Cancer. 2014;110:1923–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kwon NH, Kim JS, Lee JY, Oh MJ, Choi DC. DNA methylation and the expression of IL-4 and IFN-gamma promoter genes in patients with bronchial asthma. J Clin Immunol. 2008;28:139–46.

    Article  CAS  PubMed  Google Scholar 

  11. Munster PN, Thurn KT, Thomas S, Raha P, Lacevic M, Miller A, et al. A phase II study of the histone deacetylase inhibitor vorinostat combined with tamoxifen for the treatment of patients with hormone therapy-resistant breast cancer. Br J Cancer. 2011;104:1828–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yardley DA, Ismail-Khan RR, Melichar B, Lichinitser M, Munster PN, Klein PM, et al. Randomized phase II, double-blind, placebo-controlled study of exemestane with or without entinostat in postmenopausal women with locally recurrent or metastatic estrogen receptor-positive breast cancer progressing on treatment with a nonsteroidal aromatase inhibitor. J Clin Oncol. 2013;31:2128–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jiang Z, Li W, Hu X, Zhang Q, Sun T, Cui S, et al. Tucidinostat plus exemestane for postmenopausal patients with advanced, hormone receptor-positive breast cancer (ACE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019;20:806–15.

    Article  CAS  PubMed  Google Scholar 

  14. Bitzer M, Horger M, Giannini EG, Ganten TM, Worns MA, Siveke JT, et al. Resminostat plus sorafenib as second-line therapy of advanced hepatocellular carcinoma—The SHELTER study. J Hepatol. 2016;65:280–8.

    Article  CAS  PubMed  Google Scholar 

  15. Aggarwal R, Thomas S, Pawlowska N, Bartelink I, Grabowsky J, Jahan T, et al. Inhibiting histone deacetylase as a means to reverse resistance to angiogenesis inhibitors: phase I study of abexinostat plus pazopanib in advanced solid tumor malignancies. J Clin Oncol. 2017;35:1231–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zibelman M, Wong YN, Devarajan K, Malizzia L, Corrigan A, Olszanski AJ, et al. Phase I study of the mTOR inhibitor ridaforolimus and the HDAC inhibitor vorinostat in advanced renal cell carcinoma and other solid tumors. Invest N Drugs. 2015;33:1040–7.

    Article  CAS  Google Scholar 

  17. Harkenrider MM, Markham MJ, Dizon DS, Jhingran A, Salani R, Serour RK, et al. Moving forward in cervical cancer—enhancing susceptibility to DNA repair inhibition and damage: NCI clinical trials planning meeting report. J Natl Cancer Inst. 2020;112:1081–8.

  18. Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150:12–27.

    Article  CAS  PubMed  Google Scholar 

  19. Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK, Zhou MM. Structure and ligand of a histone acetyltransferase bromodomain. Nature. 1999;399:491–6.

    Article  CAS  PubMed  Google Scholar 

  20. Haynes SR, Dollard C, Winston F, Beck S, Trowsdale J, Dawid IB. The bromodomain: a conserved sequence found in human, Drosophila and yeast proteins. Nucleic Acids Res. 1992;20:2603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, et al. Selective inhibition of BET bromodomains. Nature. 2010;468:1067–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G, Bantscheff M, Chan WI, et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature. 2011;478:529–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cheng Z, Gong Y, Ma Y, Lu K, Lu X, Pierce LA, et al. Inhibition of BET bromodomain targets genetically diverse glioblastoma. Clin Cancer Res. 2013;19:1748–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chaidos A, Caputo V, Gouvedenou K, Liu B, Marigo I, Chaudhry MS, et al. Potent antimyeloma activity of the novel bromodomain inhibitors I-BET151 and I-BET762. Blood. 2014;123:697–705.

    Article  CAS  PubMed  Google Scholar 

  25. Welti J, Sharp A, Yuan W, Dolling D, Nava Rodrigues D, Figueiredo I, et al. Targeting bromodomain and extra-terminal (BET) family proteins in castration-resistant prostate cancer (CRPC). Clin Cancer Res. 2018;24:3149–62.

    Article  CAS  Google Scholar 

  26. Karakashev S, Zhu H, Yokoyama Y, Zhao B, Fatkhutdinov N, Kossenkov AV, et al. BET bromodomain inhibition synergizes with PARP inhibitor in epithelial ovarian cancer. Cell Rep. 2017;21:3398–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang L, Zhang Y, Shan W, Hu Z, Yuan J, Pi J, et al. Repression of BET activity sensitizes homologous recombination-proficient cancers to PARP inhibition. Sci Transl Med. 2017;9:400.

  28. Li N, Yang L, Qi XK, Lin YX, Xie X, He GP, et al. BET bromodomain inhibitor JQ1 preferentially suppresses EBV-positive nasopharyngeal carcinoma cells partially through repressing c-Myc. Cell Death Dis. 2018;9:761.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wang J, Wang Y, Mei H, Yin Z, Geng Y, Zhang T, et al. The BET bromodomain inhibitor JQ1 radiosensitizes non-small cell lung cancer cells by upregulating p21. Cancer Lett. 2017;391:141–51.

    Article  CAS  PubMed  Google Scholar 

  30. Mizuta R, LaSalle JM, Cheng HL, Shinohara A, Ogawa H, Copeland N, et al. RAB22 and RAB163/mouse BRCA2: proteins that specifically interact with the RAD51 protein. Proc Natl Acad Sci USA. 1997;94:6927–32.

    Article  CAS  PubMed  Google Scholar 

  31. Kovalenko OV, Golub EI, Bray-Ward P, Ward DC, Radding CM. A novel nucleic acid-binding protein that interacts with human rad51 recombinase. Nucleic Acids Res. 1997;25:4946–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Modesti M, Budzowska M, Baldeyron C, Demmers JA, Ghirlando R, Kanaar R. RAD51AP1 is a structure-specific DNA binding protein that stimulates joint molecule formation during RAD51-mediated homologous recombination. Mol Cell. 2007;28:468–81.

    Article  CAS  PubMed  Google Scholar 

  33. Rashmi R, Huang X, Floberg JM, Elhammali AE, McCormick ML, Patti GJ, et al. Radioresistant cervical cancers are sensitive to inhibition of glycolysis and redox metabolism. Cancer Res. 2018;78:1392–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Najafova Z, Tirado-Magallanes R, Subramaniam M, Hossan T, Schmidt G, Nagarajan S, et al. BRD4 localization to lineage-specific enhancers is associated with a distinct transcription factor repertoire. Nucleic Acids Res. 2017;45:127–41.

    Article  CAS  PubMed  Google Scholar 

  35. Hatzi VI, Laskaratou DA, Mavragani IV, Nikitaki Z, Mangelis A, Panayiotidis MI, et al. Non-targeted radiation effects in vivo: a critical glance of the future in radiobiology. Cancer Lett. 2015;356:34–42.

    Article  CAS  PubMed  Google Scholar 

  36. Tsai CL, Liu WL, Hsu FM, Yang PS, Yen RF, Tzen KY, et al. Targeting histone deacetylase 4/ubiquitin-conjugating enzyme 9 impairs DNA repair for radiosensitization of hepatocellular carcinoma cells in mice. Hepatology. 2017;67:586–99.

  37. Prabakaran PJ, Javaid AM, Swick AD, Werner LR, Nickel KP, Sampene E, et al. Radiosensitization of adenoid cystic carcinoma with MDM2 inhibition. Clin Cancer Res. 2017;23:6044–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhuang HQ, Zhuang H, Bo Q, Guo Y, Wang J, Zhao LJ, et al. Experimental study on the regulation of erlotinib-induced radiosensitization with an anti-c-MET monoclonal antibody. Cancer Cell Int. 2014;14:109.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang Z, Huang Y, Zhang J. Molecularly targeting the PI3K-Akt-mTOR pathway can sensitize cancer cells to radiotherapy and chemotherapy. Cell Mol Biol Lett. 2014;19:233–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Williams KE, Bundred NJ, Landberg G, Clarke RB, Farnie G. Focal adhesion kinase and Wnt signaling regulate human ductal carcinoma in situ stem cell activity and response to radiotherapy. Stem Cells. 2015;33:327–41.

    Article  PubMed  Google Scholar 

  41. Balbous A, Cortes U, Guilloteau K, Rivet P, Pinel B, Duchesne M, et al. A radiosensitizing effect of RAD51 inhibition in glioblastoma stem-like cells. BMC Cancer. 2016;16:604.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lin LL, Lakomy DS, Ning MS, Simpkins F, Jhingran A. Combining novel agents with radiotherapy for gynecologic malignancies: beyond the era of cisplatin. Int J Gynecol Cancer. 2020;30:409–23.

    Article  PubMed  Google Scholar 

  43. Bagratuni T, Mavrianou N, Gavalas NG, Tzannis K, Arapinis C, Liontos M, et al. JQ1 inhibits tumour growth in combination with cisplatin and suppresses JAK/STAT signalling pathway in ovarian cancer. Eur J Cancer. 2020;126:125–35.

    Article  CAS  PubMed  Google Scholar 

  44. Rataj O, Haedicke-Jarboui J, Stubenrauch F, Iftner T. Brd4 inhibition suppresses HPV16 E6 expression and enhances chemoresponse: A potential new target in cervical cancer therapy. Int J Cancer. 2019;144:2330–8.

    Article  CAS  PubMed  Google Scholar 

  45. Postel-Vinay S, Herbschleb K, Massard C, Woodcock V, Soria JC, Walter AO, et al. First-in-human phase I study of the bromodomain and extraterminal motif inhibitor BAY 1238097: emerging pharmacokinetic/pharmacodynamic relationship and early termination due to unexpected toxicity. Eur J Cancer. 2019;109:103–10.

    Article  CAS  PubMed  Google Scholar 

  46. Lewin J, Soria JC, Stathis A, Delord JP, Peters S, Awada A, et al. Phase Ib trial with birabresib, a small-molecule inhibitor of bromodomain and extraterminal proteins, in patients with selected advanced solid tumors. J Clin Oncol. 2018;36:3007–14.

    Article  CAS  PubMed  Google Scholar 

  47. Abramson JS, Blum KA, Flinn IW, Martin Gutierrez AG, Maris M, Cooper M, et al. BET inhibitor CPI-0610 is well tolerated and induces responses in diffuse large B-cell lymphoma and follicular lymphoma: preliminary analysis of an ongoing phase 1 study. Blood. 2015;126:1491.

    Article  Google Scholar 

  48. Stonestrom AJ, Hsu SC, Werner MT, Blobel GA. Erythropoiesis provides a BRD’s eye view of BET protein function. Drug Disco Today Technol. 2016;19:23–8.

    Article  Google Scholar 

  49. Sun C, Yin J, Fang Y, Chen J, Jeong KJ, Chen X, et al. BRD4 inhibition is synthetic lethal with PARP inhibitors through the induction of homologous recombination deficiency. Cancer Cell. 2018;33:401–16 e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stanlie A, Yousif AS, Akiyama H, Honjo T, Begum NA. Chromatin reader Brd4 functions in Ig class switching as a repair complex adaptor of nonhomologous end-joining. Mol Cell. 2014;55:97–110.

    Article  CAS  PubMed  Google Scholar 

  51. Li X, Baek G, Ramanand SG, Sharp A, Gao Y, Yuan W, et al. BRD4 promotes DNA repair and mediates the formation of TMPRSS2-ERG gene rearrangements in prostate cancer. Cell Rep. 2018;22:796–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Natural Science Foundation of China to XW (No. 81672569), the Natural Science Foundation of Shanghai to GK (No. 19ZR1410700), and the National Natural Science Foundation of China to JL (No. 81902660).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guihao Ke or Xiaohua Wu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, M., Li, J., Zhao, H. et al. BRD4 inhibition sensitizes cervical cancer to radiotherapy by attenuating DNA repair. Oncogene 40, 2711–2724 (2021). https://doi.org/10.1038/s41388-021-01735-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01735-3

This article is cited by

Search

Quick links