Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

VHL-HIF-2α axis-induced SMYD3 upregulation drives renal cell carcinoma progression via direct trans-activation of EGFR

Abstract

It has been well established that the von Hippel-Lindau/hypoxia-inducible factor α (VHL-HIFα) axis and epidermal growth factor receptor (EGFR) signaling pathway play a critical role in the pathogenesis and progression of renal cell carcinoma (RCC). However, few studies have addressed the relationship between the two oncogenic drivers in RCC. SET and MYND domain-containing protein 3 (SMYD3) is a histone methyltransferase involved in gene transcription and oncogenesis, but its expression and function in RCC remain unclear. In the present study, we found that SMYD3 expression was significantly elevated in RCC tumors and correlated with advanced tumor stage, histological and nuclear grade, and shorter survival. Depletion of SMYD3 inhibited RCC cell proliferation, colony numbers, and xenograft tumor formation, while promoted apoptosis. Mechanistically, SMYD3 cooperates with SP1 to transcriptionally promote EGFR expression, amplifying its downstream signaling activity. TCGA data analyses revealed a significantly increased SMYD3 expression in primary RCC tumors carrying the loss-of-function VHL mutations. We further showed that HIF-2α can directly bind to the SMYD3 promoter and subsequently induced SMYD3 transcription and expression. Taken together, we identify the VHL/HIF-2α/SMYD3 signaling cascade-mediated EGFR hyperactivity through which SMYD3 promotes RCC progression. Our study suggests that SMYD3 is a potential therapeutic target and prognostic factor in RCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Enhanced SMYD3 expression in RCC tumors and its association with clinical outcomes.
Fig. 2: Effects of SMYD3 inhibition on tumorigenic and proliferation/survival potential of human RCC cells in vitro.
Fig. 3: SMYD3 knockdown impairs tumorigenic potential in RCC-derived cells.
Fig. 4: SMYD3 induces EGFR transcription and expression in human RCC cells.
Fig. 5: VHL inhibits SMYD3 expression in RCC cells and is negatively correlated with SMYD3 expression in RCC tumors.

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.

    Article  PubMed  Google Scholar 

  2. Hsieh JJ, Le VH, Oyama T, Ricketts CJ, Ho TH, Cheng EH. Chromosome 3p loss-orchestrated VHL, HIF, and epigenetic deregulation in clear cell renal cell carcinoma. J Clin Oncol. 2018;36:3533–9.

    Article  CAS  PubMed Central  Google Scholar 

  3. Chappell JC, Payne LB, Rathmell WK. Hypoxia, angiogenesis, and metabolism in the hereditary kidney cancers. J Clin Invest. 2019;129:442–51.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Turajlic S, Xu H, Litchfield K, Rowan A, Horswell S, Chambers T, et al. Deterministic evolutionary trajectories influence primary tumor growth: TRACERx renal. Cell. 2018;173:595–610 e511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Minner S, Rump D, Tennstedt P, Simon R, Burandt E, Terracciano L, et al. Epidermal growth factor receptor protein expression and genomic alterations in renal cell carcinoma. Cancer. 2012;118:1268–75.

    Article  CAS  PubMed  Google Scholar 

  6. Feng ZH, Fang Y, Zhao LY, Lu J, Wang YQ, Chen ZH, et al. RIN1 promotes renal cell carcinoma malignancy by activating EGFR signaling through Rab25. Cancer Sci. 2017;108:1620–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kassouf W. Editorial comment on: von Hippel-Lindau tumor suppressor gene loss in renal cell carcinoma promotes oncogenic epidermal growth factor receptor signaling via Akt-1 and MEK-1. Eur Urol. 2008;54:853–4.

    Article  PubMed  Google Scholar 

  8. Liu F, Shangli Z, Hu Z. CAV2 promotes the growth of renal cell carcinoma through the EGFR/PI3K/Akt pathway. Onco Targets Ther. 2018;11:6209–16.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhang F, Ma X, Li H, Zhang Y, Li X, Chen L, et al. FOXK2 suppresses the malignant phenotype and induces apoptosis through inhibition of EGFR in clear-cell renal cell carcinoma. Int J Cancer. 2018;142:2543–57.

    Article  CAS  PubMed  Google Scholar 

  10. Dehghani M, Brobey RK, Wang Y, Souza G, Amato RJ, Rosenblatt KP. Klotho inhibits EGF-induced cell migration in Caki-1 cells through inactivation of EGFR and p38 MAPK signaling pathways. Oncotarget. 2018;9:26737–50.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wang A, Bao Y, Wu Z, Zhao T, Wang D, Shi J, et al. Long noncoding RNA EGFR-AS1 promotes cell growth and metastasis via affecting HuR mediated mRNA stability of EGFR in renal cancer. Cell Death Dis. 2019;10:154.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Liu L, Miao L, Liu Y, Qi A, Xie P, Chen J, et al. S100A11 regulates renal carcinoma cell proliferation, invasion, and migration via the EGFR/Akt signaling pathway and E-cadherin. Tumour Biol. 2017;39:1010428317705337.

    PubMed  Google Scholar 

  13. Chen F, Deng J, Liu X, Li W, Zheng J. HCRP-1 regulates cell migration and invasion via EGFR-ERK mediated up-regulation of MMP-2 with prognostic significance in human renal cell carcinoma. Sci Rep. 2015;5:13470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. An J, Rettig MB. Epidermal growth factor receptor inhibition sensitizes renal cell carcinoma cells to the cytotoxic effects of bortezomib. Mol Cancer Ther. 2007;6:61–9.

    Article  CAS  PubMed  Google Scholar 

  15. Mizumoto A, Yamamoto K, Nakayama Y, Takara K, Nakagawa T, Hirano T, et al. Induction of epithelial-mesenchymal transition via activation of epidermal growth factor receptor contributes to sunitinib resistance in human renal cell carcinoma cell lines. J Pharm Exp Ther. 2015;355:152–8.

    Article  CAS  Google Scholar 

  16. Gong X, Du X, Xu Y, Zheng W. LINC00037 inhibits proliferation of renal cell carcinoma cells in an epidermal growth factor receptor-dependent way. Cell Physiol Biochem. 2018;45:523–36.

    Article  CAS  PubMed  Google Scholar 

  17. Ravaud A, Hawkins R, Gardner JP, von der Maase H, Zantl N, Harper P, et al. Lapatinib versus hormone therapy in patients with advanced renal cell carcinoma: a randomized phase III clinical trial. J Clin Oncol. 2008;26:2285–91.

    Article  CAS  PubMed  Google Scholar 

  18. Smith K, Gunaratnam L, Morley M, Franovic A, Mekhail K, Lee S. Silencing of epidermal growth factor receptor suppresses hypoxia-inducible factor-2-driven VHL−/− renal cancer. Cancer Res. 2005;65:5221–30.

    Article  CAS  PubMed  Google Scholar 

  19. Ricketts CJ, Linehan WM. Insights into epigenetic remodeling in VHL-deficient clear cell renal cell carcinoma. Cancer Disco. 2017;7:1221–3.

    Article  CAS  Google Scholar 

  20. Erfani P, Tome-Garcia J, Canoll P, Doetsch F, Tsankova NM. EGFR promoter exhibits dynamic histone modifications and binding of ASH2L and P300 in human germinal matrix and gliomas. Epigenetics. 2015;10:496–507.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Giakountis A, Moulos P, Sarris ME, Hatzis P, Talianidis I. Smyd3-associated regulatory pathways in cancer. Semin Cancer Biol. 2017;42:70–80.

    Article  CAS  PubMed  Google Scholar 

  22. Fenizia C, Bottino C, Corbetta S, Fittipaldi R, Floris P, Gaudenzi G, et al. SMYD3 promotes the epithelial-mesenchymal transition in breast cancer. Nucleic Acids Res. 2019;47:1278–93.

    Article  PubMed Central  CAS  Google Scholar 

  23. Hamamoto R, Furukawa Y, Morita M, Iimura Y, Silva FP, Li M, et al. SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol. 2004;6:731–40.

    Article  CAS  PubMed  Google Scholar 

  24. Sarris ME, Moulos P, Haroniti A, Giakountis A, Talianidis I. Smyd3 is a transcriptional potentiator of multiple cancer-promoting genes and required for liver and colon cancer development. Cancer Cell. 2016;29:354–66.

    Article  CAS  PubMed  Google Scholar 

  25. Liu C, Wang C, Wang K, Liu L, Shen Q, Yan K, et al. SMYD3 as an oncogenic driver in prostate cancer by stimulation of androgen receptor transcription. J Natl Cancer Inst. 2013;105:1719–28.

    Article  CAS  PubMed  Google Scholar 

  26. Tsuge M, Hamamoto R, Silva FP, Ohnishi Y, Chayama K, Kamatani N, et al. A variable number of tandem repeats polymorphism in an E2F-1 binding element in the 5’ flanking region of SMYD3 is a risk factor for human cancers. Nat Genet. 2005;37:1104–7.

    Article  CAS  PubMed  Google Scholar 

  27. Wang G, Huang Y, Yang F, Tian X, Wang K, Liu L, et al. High expression of SMYD3 indicates poor survival outcome and promotes tumour progression through an IGF-1R/AKT/E2F-1 positive feedback loop in bladder cancer. Aging. 2020;12:2030–48.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bheda A, Creek KE, Pirisi L. Loss of p53 induces epidermal growth factor receptor promoter activity in normal human keratinocytes. Oncogene. 2008;27:4315–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang L, Xu AM. SET and MYND domain containing protein 3 in cancer. Am J Transl Res. 2017;9:1–14.

    PubMed  PubMed Central  Google Scholar 

  30. Van Aller GS, Reynoird N, Barbash O, Huddleston M, Liu S, Zmoos AF, et al. Smyd3 regulates cancer cell phenotypes and catalyzes histone H4 lysine 5 methylation. Epigenetics. 2012;7:340–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Mazur PK, Reynoird N, Khatri P, Jansen PW, Wilkinson AW, Liu S, et al. SMYD3 links lysine methylation of MAP3K2 to Ras-driven cancer. Nature. 2014;510:283–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim H, Heo K, Kim JH, Kim K, Choi J, An W. Requirement of histone methyltransferase SMYD3 for estrogen receptor-mediated transcription. J Biol Chem. 2009;284:19867–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim JM, Kim K, Schmidt T, Punj V, Tucker H, Rice JC, et al. Cooperation between SMYD3 and PC4 drives a distinct transcriptional program in cancer cells. Nucleic Acids Res. 2015;43:8868–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schodel J, Grampp S, Maher ER, Moch H, Ratcliffe PJ, Russo P, et al. Hypoxia, hypoxia-inducible transcription factors, and renal cancer. Eur Urol. 2016;69:646–57.

    Article  PubMed  CAS  Google Scholar 

  35. Chakraborty AA, Nakamura E, Qi J, Creech A, Jaffe JD, Paulk J, et al. HIF activation causes synthetic lethality between the VHL tumor suppressor and the EZH1 histone methyltransferase. Sci Transl Med. 2017;36:3533–9.

  36. Liu C, Fang X, Ge Z, Jalink M, Kyo S, Bjorkholm M, et al. The telomerase reverse transcriptase (hTERT) gene is a direct target of the histone methyltransferase SMYD3. Cancer Res. 2007;67:2626–31.

    Article  CAS  PubMed  Google Scholar 

  37. Yuan X, Larsson C, Xu D. Mechanisms underlying the activation of TERT transcription and telomerase activity in human cancer: old actors and new players. Oncogene. 2019;38:6172–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cossu-Rocca P, Muroni MR, Sanges F, Sotgiu G, Asunis A, Tanca L, et al. EGFR kinase-dependent and kinase-independent roles in clear cell renal cell carcinoma. Am J Cancer Res. 2016;6:71–83.

    CAS  PubMed  Google Scholar 

  39. Jamal-Hanjani M, Wilson GA, McGranahan N, Birkbak NJ, Watkins TBK, Veeriah S, et al. Tracking the evolution of non-small-cell lung cancer. N. Engl J Med. 2017;376:2109–21.

    Article  CAS  PubMed  Google Scholar 

  40. Merseburger AS, Hennenlotter J, Simon P, Kruck S, Koch E, Horstmann M, et al. Membranous expression and prognostic implications of epidermal growth factor receptor protein in human renal cell cancer. Anticancer Res. 2005;25:1901–7.

    CAS  PubMed  Google Scholar 

  41. Cohen D, Lane B, Jin T, Magi-Galluzzi C, Finke J, Rini BI, et al. The prognostic significance of epidermal growth factor receptor expression in clear-cell renal cell carcinoma: a call for standardized methods for immunohistochemical evaluation. Clin Genitourin Cancer. 2007;5:264–70.

    Article  CAS  PubMed  Google Scholar 

  42. Thomasson M, Hedman H, Ljungberg B, Henriksson R. Gene expression pattern of the epidermal growth factor receptor family and LRIG1 in renal cell carcinoma. BMC Res Notes. 2012;5:216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chu C, Lu C, Zhang Z, Zhao C, Gu M, Yang A, et al. Correlation of VEGF and EGFR in peripheral blood with clinical stage and pathological grade of renal cell carcinoma and analysis of prognosis. J BUON. 2018;23:1097–102.

    PubMed  Google Scholar 

  44. Coppin C, Kollmannsberger C, Le L, Porzsolt F, Wilt TJ. Targeted therapy for advanced renal cell cancer (RCC): a Cochrane systematic review of published randomised trials. BJU Int. 2011;108:1556–63.

    Article  CAS  PubMed  Google Scholar 

  45. Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol. 2010;17:1471–4.

    Article  PubMed  Google Scholar 

  46. Guo J, Gong G, Zhang B. miR-539 acts as a tumor suppressor by targeting epidermal growth factor receptor in breast cancer. Sci Rep. 2018;8:2073.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Johnson AC. Activation of epidermal growth factor receptor gene transcription by phorbol 12-myristate 13-acetate is mediated by activator protein 2. J Biol Chem. 1996;271:3033–8.

    CAS  PubMed  Google Scholar 

  48. Lin F, Wu D, Fang D, Chen Y, Zhou H, Ou C. STAT3-induced SMYD3 transcription enhances chronic lymphocytic leukemia cell growth in vitro and in vivo. Inflamm Res. 2019;68:739–49.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was funded by Peking University Medicine Fund of Fostering Young Scholars’ Scientific and Technological Innovation BMU2018PY003; the National Natural Science Foundation of China (Nos: 81711530048, 81572515, 81672522, and 81972381); Peking University Third Hospital Clinical Research Fund BYSY2018062 and BYSY2018012; the Fundamental Research funds for the Central Universities (No. 2020-JYB-XJSJJ-031); the Swedish Cancer Society, the Swedish Research Council, and Cancer Society in Stockholm.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng Liu or Lu-Lin Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Liu, L., Wang, K. et al. VHL-HIF-2α axis-induced SMYD3 upregulation drives renal cell carcinoma progression via direct trans-activation of EGFR. Oncogene 39, 4286–4298 (2020). https://doi.org/10.1038/s41388-020-1291-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1291-7

This article is cited by

Search

Quick links