Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MicroRNA-140 impedes DNA repair by targeting FEN1 and enhances chemotherapeutic response in breast cancer

Abstract

An increased DNA repair capacity is associated with drug resistance and limits the efficacy of chemotherapy in breast cancers. Flap endonuclease 1 (FEN1) participates in various DNA repair pathways and contributes to cancer progression and drug resistance in chemotherapy. Inhibition of FEN1 serves as a potent strategy for cancer therapy. Here, we demonstrate that microRNA-140 (miR-140) inhibits FEN1 expression via directly binding to its 3′ untranslated region, leading to impaired DNA repair and repressed breast cancer progression. Overexpression of miR-140 sensitizes breast cancer cells to chemotherapeutic agents and overcomes drug resistance in breast cancer. Notably, ectopic expression of FEN1 abates the effects of miR-140 on DNA damage and the chemotherapy response in breast cancer cells. Furthermore, the transcription factor/repressor Ying Yang 1 (YY1) directly binds to the miR-140 promoter and activates miR-140 expression, which is attenuated in doxorubicin resistance. Our results demonstrate that miR-140 acts as a tumor suppressor in breast cancer by inhibiting FEN1 to repress DNA damage repair and reveal miR-140 to be a new anti-tumorigenesis factor for adjunctive breast cancer therapy. This novel mechanism will enhance the treatment effect of chemotherapy in breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461:1071–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Tubbs A, Nussenzweig A. Endogenous DNA damage as a source of genomic instability in cancer. Cell. 2017;168:644–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. O’Connor MJ. Targeting the DNA Damage Response in Cancer. Mol Cell. 2015;60:547–60.

    PubMed  Google Scholar 

  4. Zheng L, Jia J, Finger LD, Guo ZG, Zer C, Shen BH. Functional regulation of FEN1 nuclease and its link to cancer. Nucleic Acids Res. 2011;39:781–94.

    CAS  PubMed  Google Scholar 

  5. Balakrishnan L, Bambara RA. Flap endonuclease 1. Annu Rev Biochem. 2013;82:119–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wu X, Wilson TE, Lieber MR. A role for FEN-1 in nonhomologous DNA end joining: the order of strand annealing and nucleolytic processing events. Proc Natl Acad Sci USA. 1999;96:1303–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Yoon JH, Swiderski PM, Kaplan BE, Takao M, Yasui A, Shen B, et al. Processing of UV damage in vitro by FEN-1 proteins as part of an alternative DNA excision repair pathway. Biochemistry. 1999;38:4809–17.

    CAS  PubMed  Google Scholar 

  8. He L, Luo L, Zhu H, Yang H, Zhang Y, Wu H, et al. FEN1 promotes tumor progression and confers cisplatin resistance in non-small-cell lung cancer. Mol Oncol. 2017;11:640–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Senkevich TG, Koonin EV, Moss B. Predicted poxvirus FEN1-like nuclease required for homologous recombination, double-strand break repair and full-size genome formation. Proc Natl Acad Sci USA. 2009;106:17921–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang JW, Zhou LN, Li Z, Zhang T, Liu WP, Liu Z, et al. YY1 suppresses FEN1 over-expression and drug resistance in breast cancer progression. BMC Cancer. 2015;15:50.

  11. He LF, Zhang YL, Sun HF, Jiang F, Yang H, Wu H, et al. Targeting DNA flap endonuclease 1 to impede breast cancer progression. EBioMedicine. 2016;14:32–43.

    PubMed  PubMed Central  Google Scholar 

  12. Liu L, Zhou CC, Zhou LQ, Peng L, Li DP, Zhang XJ, et al. Functional FEN1 genetic variants contribute to risk of hepatocellular carcinoma, esophageal cancer, gastric cancer and colorectal cancer. Carcinogenesis. 2012;33:119–23.

    PubMed  Google Scholar 

  13. Yang M, Guo H, Wu C, He YF, Yu DK, Zhou L, et al. Functional FEN1 polymorphisms are associated with DNA damage levels and lung cancer risk. Hum Mutat. 2009;30:1320–8.

    CAS  PubMed  Google Scholar 

  14. Sun H, He L, Wu H, Pan F, Wu X, Zhao J, et al. The FEN1 L209P mutation interferes with long-patch base excision repair and induces cellular transformation. Oncogene. 2017;36:194–207.

    CAS  PubMed  Google Scholar 

  15. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    PubMed  Google Scholar 

  16. Singh P, Yang M, Dai HF, Yu DK, Huang Q, Tan W, et al. Overexpression and hypomethylation of flap endonuclease 1 gene in breast and other cancers. Mol Cancer Res. 2008;6:1710–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hu ZG, Shen WJ, Kraemer FB, Azhar S. Regulation of adrenal and ovarian steroidogenesis by miR-132. J Mol Endocrinol. 2017;59:269–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang MN, Li LL, Liu R, Song YW, Zhang XX, Niu WJ, et al. Obesity-induced overexpression of miRNA-24 regulates cholesterol uptake and lipid metabolism by targeting SR-B1. Gene. 2018;668:196–203.

    CAS  PubMed  Google Scholar 

  19. Kato M, Paranjape T, Muller RU, Nallur S, Gillespie E, Keane K. et al. The mir-34 microRNA is required for the DNA damage response in vivo in C. elegans and in vitro in human breast cancer cells. Oncogene. 2009;28:3008.

    CAS  Google Scholar 

  20. di Fagagna FD. A direct role for small non-coding RNAs in DNA damage response. Trends Cell Biol. 2014;24:171–8.

    Google Scholar 

  21. Lee JH, Park SJ, Jeong SY, Kim MJ, Jun S, Lee HS, et al. MicroRNA-22 suppresses DNA repair and promotes genomic instability through targeting of MDC1. Cancer Res. 2015;75:1298–310.

    CAS  PubMed  Google Scholar 

  22. Hu H, Gatti RA. MicroRNAs: new players in the DNA damage response. J Mol Cell Biol. 2011;3:151–8.

    CAS  PubMed  Google Scholar 

  23. Xie QH, He XX, Chang Y, Sun SZ, Jiang X, Li PY, et al. MiR-192 inhibits nucleotide excision repair by targeting ERCC3 and ERCC4 in HepG2.2.15 cells. Biochem Biophys Res Commun. 2011;410:440–5.

    CAS  PubMed  Google Scholar 

  24. Valeri N, Gasparini P, Braconi C, Paone A, Lovat F, Fabbri M, et al. MicroRNA-21 induces resistance to 5-fluorouracil by down-regulating human DNA MutS homolog 2 (hMSH2). Proc Natl Acad Sci USA. 2010;107:21098–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Krishnan K, Steptoe AL, Martin HC, Wani S, Nones K, Waddell N, et al. MicroRNA-182-5p targets a network of genes involved in DNA repair. RNA. 2013;19:230–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Betel D, Wilson M, Gabow A, Marks DS, Sander C. The microRNA.org resource: targets and expression. Nucleic Acids Res. 2008;36:D149–53.

    CAS  PubMed  Google Scholar 

  27. Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. eLife. 2015;4:e05005.

  28. Guo Z, Kanjanapangka J, Liu N, Liu S, Liu C, Wu Z, et al. Sequential posttranslational modifications program FEN1 degradation during cell-cycle progression. Mol Cell. 2012;47:444–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ramos P, Bentires-Alj M. Mechanism-based cancer therapy: resistance to therapy, therapy for resistance. Oncogene. 2015;34:3617–26.

    CAS  PubMed  Google Scholar 

  30. Rebucci M, Michiels C. Molecular aspects of cancer cell resistance to chemotherapy. Biochem Pharm. 2013;85:1219–26.

    CAS  PubMed  Google Scholar 

  31. Farre D, Roset R, Huerta M, Adsuara JE, Rosello L, Alba MM, et al. Identification of patterns in biological sequences at the ALGGEN server: PROMO and MALGEN. Nucleic Acids Res. 2003;31:3651–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Deng Z, Wan M, Cao P, Rao A, Cramer SD, Sui G. Yin Yang 1 regulates the transcriptional activity of androgen receptor. Oncogene. 2009;28:3746–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhou T, Pan F, Cao Y, Han Y, Zhao J, Sun H, et al. R152C DNA Pol beta mutation impairs base excision repair and induces cellular transformation. Oncotarget. 2016;7:6902–15.

    PubMed  PubMed Central  Google Scholar 

  34. He L, Yang H, Zhou S, Zhu H, Mao H, Ma Z, et al. Synergistic antitumor effect of combined paclitaxel with FEN1 inhibitor in cervical cancer cells. DNA Repair. 2018;63:1–9.

    CAS  PubMed  Google Scholar 

  35. Lu Y, Qin T, Li J, Wang L, Zhang Q, Jiang Z, et al. MicroRNA-140-5p inhibits invasion and angiogenesis through targeting VEGF-A in breast cancer. Cancer Gene Ther. 2017;24:386–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang H, Fang F, Chang R, Yang L. MicroRNA-140-5p suppresses tumor growth and metastasis by targeting transforming growth factor beta receptor 1 and fibroblast growth factor 9 in hepatocellular carcinoma. Hepatology. 2013;58:205–17.

    CAS  PubMed  Google Scholar 

  37. Li Q, Yao Y, Eades G, Liu Z, Zhang Y, Zhou Q. Downregulation of miR-140 promotes cancer stem cell formation in basal-like early stage breast cancer. Oncogene. 2014;33:2589–600.

    CAS  PubMed  Google Scholar 

  38. Kai Y, Peng W, Ling W, Hao JB, Zhuan B. Reciprocal effects between microRNA-140-5p and ADAM10 suppress migration and invasion of human tongue cancer cells. Biochem Biophys Res Commun. 2014;448:308–14.

    CAS  PubMed  Google Scholar 

  39. Yuan Y, Shen Y, Xue L, Fan H. miR-140 suppresses tumor growth and metastasis of non-small cell lung cancer by targeting insulin-like growth factor 1 receptor. PLoS ONE. 2013;8:e73604.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang YS, Eades G, Yao Y, Li QL, Zhou Q. Estrogen receptor alpha signaling regulates breast tumor-initiating cells by down-regulating miR-140 which targets the transcription factor SOX2. J Biol Chem. 2012;287:41514–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Song B, Wang Y, Xi Y, Kudo K, Bruheim S, Botchkina GI, et al. Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells. Oncogene. 2009;28:4065–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Gordon S, Akopyan G, Garban H, Bonavida B. Transcription factor YY1: structure, function, and therapeutic implications in cancer biology. Oncogene. 2006;25:1125–42.

    CAS  PubMed  Google Scholar 

  43. Wang CC, Tsai MF, Hong TM, Chang GC, Chen CY, Yang WM, et al. The transcriptional factor YY1 upregulates the novel invasion suppressor HLJ1 expression and inhibits cancer cell invasion. Oncogene. 2005;24:4081–93.

    CAS  PubMed  Google Scholar 

  44. Castellano G, Torrisi E, Ligresti G, Malaponte G, Militello L, Russo AE, et al. The involvement of the transcription factor Yin Yang 1 in cancer development and progression. Cell Cycle. 2009;8:1367–72.

    CAS  PubMed  Google Scholar 

  45. Frasor J, Chang EC, Komm B, Lin CY, Vega VB, Liu ET, et al. Gene expression preferentially regulated by tamoxifen in breast cancer cells and correlations with clinical outcome. Cancer Res. 2006;66:7334–40.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81872284, 31400659, and 31701179), China Postdoctoral Science Foundation (2016M591877), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhigang Hu or Zhigang Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Liu, R., Wang, M. et al. MicroRNA-140 impedes DNA repair by targeting FEN1 and enhances chemotherapeutic response in breast cancer. Oncogene 39, 234–247 (2020). https://doi.org/10.1038/s41388-019-0986-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0986-0

This article is cited by

Search

Quick links