Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cyclin D1 is a mediator of gastrointestinal stromal tumor KIT-independence

Abstract

Oncogenic KIT or PDGFRA tyrosine kinase mutations are compelling therapeutic targets in most gastrointestinal stromal tumors (GISTs), and the KIT inhibitor, imatinib, is therefore standard of care for patients with metastatic GIST. However, some GISTs lose expression of KIT oncoproteins, and therefore become KIT-independent and are consequently resistant to KIT-inhibitor drugs. We identified distinctive biologic features in KIT-independent, imatinib-resistant GISTs as a step towards identifying drug targets in these poorly understood tumors. We developed isogenic GIST lines in which the parental forms were KIT oncoprotein-dependent, whereas sublines had loss of KIT oncoprotein expression, accompanied by markedly downregulated expression of the GIST biomarker, protein kinase C-theta (PRKCQ). Biologic mechanisms unique to KIT-independent GISTs were identified by transcriptome sequencing, qRT-PCR, immunoblotting, protein interaction studies, knockdown and expression assays, and dual-luciferase assays. Transcriptome sequencing showed that cyclin D1 expression was extremely low in two of three parental KIT-dependent GIST lines, whereas cyclin D1 expression was high in each of the KIT-independent GIST sublines. Cyclin D1 inhibition in KIT-independent GISTs had anti-proliferative and pro-apoptotic effects, associated with Rb activation and p27 upregulation. PRKCQ, but not KIT, was a negative regulator of cyclin D1 expression, whereas JUN and Hippo pathway effectors YAP and TAZ were positive regulators of cyclin D1 expression. PRKCQ, JUN, and the Hippo pathway coordinately regulate GIST cyclin D1 expression. These findings highlight the roles of PRKCQ, JUN, Hippo, and cyclin D1 as oncogenic mediators in GISTs that have converted, during TKI-therapy, to a KIT-independent state. Inhibitors of these pathways could be effective therapeutically for these now untreatable tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fletcher CD, Berman JJ, Corless C, Gorstein F, Lasota J, Longley BJ, et al. Diagnosis of gastrointestinal stromal tumors: a consensus approach. Hum Pathol. 2002;33:459–65.

    Article  Google Scholar 

  2. Corless CL, Fletcher JA, Heinrich MC. Biology of gastrointestinal stromal tumors. J Clin Oncol. 2004;22:3813–25.

    Article  CAS  Google Scholar 

  3. Hirota S, Isozaki K, Moriyama Y, Hashimoto K, Nishida T, Ishiguro S, et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science. 1998;279:577–80.

    Article  CAS  Google Scholar 

  4. Heinrich MC, Corless CL, Duensing A, McGreevey L, Chen CJ, Joseph N, et al. PDGFRA activating mutations in gastrointestinal stromal tumors. Science. 2003;299:708–10.

    Article  CAS  Google Scholar 

  5. Tuveson DA, Willis NA, Jacks T, Griffin JD, Singer S, Fletcher CD, et al. STI571 inactivation of the gastrointestinal stromal tumor c-KIT oncoprotein: biological and clinical implications. Oncogene. 2001;20:5054–8.

    Article  CAS  Google Scholar 

  6. Demetri GD, von Mehren M, Blanke CD, Van den Abbeele AD, Eisenberg B, Roberts PJ, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med. 2002;347:472–80.

    Article  CAS  Google Scholar 

  7. Heinrich MC, Maki RG, Corless CL, Antonescu CR, Harlow A, Griffith D, et al. Primary and secondary kinase genotypes correlate with the biological and clinical activity of sunitinib in imatinib-resistant gastrointestinal stromal tumor. J Clin Oncol. 2008;26:5352–9.

    Article  CAS  Google Scholar 

  8. Blay JY, Bonvalot S, Casali P, Choi H, Debiec-Richter M, Dei Tos AP, et al. Consensus meeting for the management of gastrointestinal stromal tumors. Report of the GIST Consensus Conference of 20–21 March 2004, under the auspices of ESMO. Ann Oncol. 2005;16:566–78.

  9. Demetri GD, Heinrich MC, Fletcher JA, Fletcher CD, Van den Abbeele AD, Corless CL, et al. Molecular target modulation, imaging, and clinical evaluation of gastrointestinal stromal tumor patients treated with sunitinib malate after imatinib failure. Clin Cancer Res. 2009;15:5902–9.

    Article  CAS  Google Scholar 

  10. Essat M, Cooper K. Imatinib as adjuvant therapy for gastrointestinal stromal tumors: a systematic review. Int J Cancer. 2011;128:2202–14.

    Article  CAS  Google Scholar 

  11. Heinrich MC, Corless CL, Blanke CD, Demetri GD, Joensuu H, Roberts PJ, et al. Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J Clin Oncol. 2006;24:4764–74.

    Article  CAS  Google Scholar 

  12. Liegl B, Kepten I, Le C, Zhu M, Demetri GD, Heinrich MC, et al. Heterogeneity of kinase inhibitor resistance mechanisms in GIST. J Pathol. 2008;216:64–74.

    Article  CAS  Google Scholar 

  13. Fletcher JA, Corless CL, Dimitrijevic S, Von Mehren B, Eisenberg B, Joensuu H, et al. Mechanisms of resistance to imatinib mesylate (IM) in advanced gastrointestinal stromal tumor (GIST). Proc Am Soc Clin Oncol. 2003;22:815.

    Google Scholar 

  14. Debiec-Rychter M, Cools J, Dumez H, Sciot R, Stul M, Mentens N, et al. Mechanisms of resistance to imatinib mesylate in gastrointestinal stromal tumors and activity of the PKC412 inhibitor against imatinib-resistant mutants. Gastroenterology. 2005;128:270–9.

    Article  CAS  Google Scholar 

  15. Duensing A, Joseph NE, Medeiros F, Smith F, Hornick JL, Heinrich MC, et al. Protein Kinase C theta (PKCtheta) expression and constitutive activation in gastrointestinal stromal tumors (GISTs). Cancer Res. 2004;64:5127–31.

    Article  CAS  Google Scholar 

  16. Ou WB, Zhu MJ, Demetri GD, Fletcher CD, Fletcher JA. Protein kinase C-theta regulates KIT expression and proliferation in gastrointestinal stromal tumors. Oncogene. 2008;27:5624–34.

    Article  CAS  Google Scholar 

  17. Page K, Li J, Corbit KC, Rumilla KM, Soh JW, Weinstein IB, et al. Regulation of airway smooth muscle cyclin D1 transcription by protein kinase C-delta. Am J Respir Cell Mol Biol. 2002;27:204–13.

    Article  CAS  Google Scholar 

  18. Hizli AA, Black AR, Pysz MA, Black JD. Protein kinase C alpha signaling inhibits cyclin D1 translation in intestinal epithelial cells. J Biol Chem. 2006;281:14596–603.

    Article  CAS  Google Scholar 

  19. Li H, Weinstein IB. Protein kinase C beta enhances growth and expression of cyclin D1 in human breast cancer cells. Cancer Res. 2006;66:11399–408.

    Article  CAS  Google Scholar 

  20. Guan L, Song K, Pysz MA, Curry KJ, Hizli AA, Danielpour D, et al. Protein kinase C-mediated down-regulation of cyclin D1 involves activation of the translational repressor 4E-BP1 via a phosphoinositide 3-kinase/Akt-independent, protein phosphatase 2A-dependent mechanism in intestinal epithelial cells. J Biol Chem. 2007;282:14213–25.

    Article  CAS  Google Scholar 

  21. Siegmund K, Thuille N, Posch N, Fresser F, Baier G. Novel protein kinase C theta: coronin 1A complex in T lymphocytes. Cell Commun Signal. 2015;13:22.

    Article  Google Scholar 

  22. Snyder EL, Sandstrom DJ, Law K, Fiore C, Sicinska E, Brito J, et al. c-Jun amplification and overexpression are oncogenic in liposarcoma but not always sufficient to inhibit the adipocytic differentiation programme. J Pathol. 2009;218:292–300.

    Article  CAS  Google Scholar 

  23. DeMatteo RP, Ballman KV, Antonescu CR, Maki RG, Pisters PW, Demetri GD, et al. Adjuvant imatinib mesylate after resection of localised, primary gastrointestinal stromal tumour: a randomised, double-blind, placebo-controlled trial. Lancet. 2009;373:1097–104.

    Article  CAS  Google Scholar 

  24. Serrano C, Wang Y, Marino-Enriquez A, Lee JC, Ravegnini G, Morgan JA, et al. KRAS and KIT gatekeeper mutations confer polyclonal primary imatinib resistance in GI stromal tumors: relevance of concomitant phosphatidylinositol 3-kinase/AKT dysregulation. J Clin Oncol. 2015;33:e93–e96.

    Article  Google Scholar 

  25. Coqueret O. Linking cyclins to transcriptional control. Gene. 2002;299:35–55.

    Article  CAS  Google Scholar 

  26. Jirawatnotai S, Hu Y, Michowski W, Elias JE, Becks L, Bienvenu F, et al. A function for cyclin D1 in DNA repair uncovered by protein interactome analyses in human cancers. Nature. 2011;474:230–4.

    Article  CAS  Google Scholar 

  27. Casimiro MC, Di Sante G, Di Rocco A, Loro E, Pupo C, Pestell TG, et al. Cyclin D1 restrains oncogene-induced autophagy by regulating the AMPK-LKB1 signaling axis. Cancer Res. 2017;77:3391–405.

    Article  CAS  Google Scholar 

  28. Sherr CJ. Cancer cell cycles. Science. 1996;274:1672–7.

    Article  CAS  Google Scholar 

  29. Diehl JA. Cycling to cancer with cyclin D1. Cancer Biol Ther. 2002;1:226–31.

    Article  CAS  Google Scholar 

  30. Li Z, Wang C, Prendergast GC, Pestell RG. Cyclin D1 functions in cell migration. Cell Cycle. 2006;5:2440–2.

    Article  CAS  Google Scholar 

  31. Landis MW, Pawlyk BS, Li T, Sicinski P, Hinds PW. Cyclin D1-dependent kinase activity in murine development and mammary tumorigenesis. Cancer Cell. 2006;9:13–22.

    Article  CAS  Google Scholar 

  32. Lee YM, Sicinski P. Targeting cyclins and cyclin-dependent kinases in cancer: lessons from mice, hopes for therapeutic applications in human. Cell Cycle. 2006;5:2110–4.

    Article  CAS  Google Scholar 

  33. Shan J, Zhao W, Gu W. Suppression of cancer cell growth by promoting cyclin D1 degradation. Mol Cell. 2009;36:469–76.

    Article  CAS  Google Scholar 

  34. Barbash O, Diehl JA. SCF(Fbx4/alphaB-crystallin) E3 ligase: when one is not enough. Cell Cycle. 2008;7:2983–6.

    Article  CAS  Google Scholar 

  35. Barbash O, Zamfirova P, Lin DI, Chen X, Yang K, Nakagawa H, et al. Mutations in Fbx4 inhibit dimerization of the SCF(Fbx4) ligase and contribute to cyclin D1 overexpression in human cancer. Cancer Cell. 2008;14:68–78.

    Article  CAS  Google Scholar 

  36. Yang P, Chen W, Li X, Eilers G, He Q, Liu L, et al. Downregulation of cyclin D1 sensitizes cancer cells to MDM2 antagonist Nutlin-3. Oncotarget. 2016;7:32652–63.

    PubMed  PubMed Central  Google Scholar 

  37. Pruneri G, Mazzarol G, Fabris S, Del Curto B, Bertolini F, Neri A, et al. Cyclin D3 immunoreactivity in gastrointestinal stromal tumors is independent of cyclin D3 gene amplification and is associated with nuclear p27 accumulation. Mod Pathol. 2003;16:886–92.

    Article  Google Scholar 

  38. Draper N, Bui M, Boulware DC, Lloyd M, Chiappori AA, Pledger WJ, et al. Increased cyclin D3 expression significantly correlates with p27 nuclear positivity in gastrointestinal stromal tumors. Hum Pathol. 2008;39:1784–91.

    Article  CAS  Google Scholar 

  39. Tashiro E, Tsuchiya A, Imoto M. Functions of cyclin D1 as an oncogene and regulation of cyclin D1 expression. Cancer Sci. 2007;98:629–35.

    Article  CAS  Google Scholar 

  40. Fernando R, Foster JS, Bible A, Ström A, Pestell RG, Rao M, et al. Breast cancer cell proliferation is inhibited by BAD: regulation of cyclin D1. J Biol Chem. 2007;282:28864–73.

    Article  CAS  Google Scholar 

  41. Vikhanskaya F, Toh WH, Dulloo I, Wu Q, Boominathan L, Ng HH, et al. p73 supports cellular growth through c-Jun-dependent AP-1 transactivation. Nat Cell Biol. 2007;9:698–705.

    Article  CAS  Google Scholar 

  42. Mizuno T, Murakami H, Fujii M, Ishiguro F, Tanaka I, Kondo Y, et al. YAP induces malignant mesothelioma cell proliferation by upregulating transcription of cell cyclepromoting genes. Oncogene. 2012;31:5117–22.

    Article  CAS  Google Scholar 

  43. Blay P, Astudillo A, Buesa JM, Campo E, Abad M, García-García J, et al. Protein kinase C theta is highly expressed in gastrointestinal stromal tumors but not in other mesenchymal neoplasias. Clin Cancer Res. 2004;10:4089–95.

    Article  CAS  Google Scholar 

  44. Motegi A, Sakurai S, Nakayama H, Sano T, Oyama T, Nakajima T. PKC theta, a novel immunohistochemical marker for gastrointestinal stromal tumors (GIST), especially useful for identifying KIT-negative tumors. Pathol Int. 2005;55:106–12.

    Article  CAS  Google Scholar 

  45. Zhu MJ, Ou WB, Fletcher CD, Cohen PS, Demetri GD, Fletcher JA. KIT oncoprotein interactions in gastrointestinal stromal tumors: therapeutic relevance. Oncogene. 2007;26:6386–95.

    Article  CAS  Google Scholar 

  46. Shaulian E, Karin M. AP-1 in cell proliferation and survival. Oncogene. 2001;20:2390–400.

    Article  CAS  Google Scholar 

  47. Mariani O, Brennetot C, Coindre JM, Gruel N, Ganem C, Delattre O, et al. JUN oncogene amplification and overexpression block adipocytic differentiation in highly aggressive sarcomas. Cancer Cell. 2007;11:361–74.

    Article  CAS  Google Scholar 

  48. Shen Q, Uray IP, Li Y, Krisko TI, Strecker TE, Kim HT, et al. The AP-1 transcription factor regulates breast cancer cell growth via cyclins and E2F factors. Oncogene. 2008;27:366–77.

    Article  CAS  Google Scholar 

  49. Bauer S, Duensing A, Demetri GD, Fletcher JA. KIT oncogenic signaling mechanisms in imatinib-resistant gastrointestinal stromal tumor: PI3-kinase/AKT is a crucial survival pathway. Oncogene. 2007;26:7560–8.

    Article  CAS  Google Scholar 

  50. Rubin BP, Singer S, Tsao C, Duensing A, Lux ML, Ruiz R, et al. KIT activation is a ubiquitous feature of gastrointestinal stromal tumors. Cancer Res. 2001;61:8118–21.

    CAS  PubMed  Google Scholar 

  51. Huang SF, Xiao S, Renshaw AA, Loughlin KR, Hudson TJ, Fletcher JA. Fluorescence in situ hybridization evaluation of chromosome deletion patterns in prostate cancer. Am J Pathol. 1996;149:1565–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Thomazy VA, Luthra R, Uthman MO, Davies PJ, Medeiros LJ. Determination of cyclin D1 and CD20 mRNA levels by real-time quantitative RT-PCR from archival tissue sections of mantle cell lymphoma and other non-Hodgkin’s lymphomas. J Mol Diagn. 2002;4:201–8.

    Article  CAS  Google Scholar 

  53. Husson H, Carideo EG, Neuberg D, Schultze J, Munoz O, Marks PW, et al. Gene expression profiling of follicular lymphoma and normal germinal center B cells using cDNA arrays. Blood. 2002;99:282–9.

    Article  CAS  Google Scholar 

  54. Jean S, Bideau C, Bellon L, Halimi G, De Méo M, Orsière T, et al. The expression of genes induced in melanocytes by exposure to 365-nm UVA: study by cDNA arrays and real-time quantitative RT-PCR. Biochim Biophys Acta. 2001;1522:89–96.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants 1P50CA127003 and 1P50CA168512, and by the GIST Cancer Research Fund, SARC and David Foundation. This research was also supported by National Natural Science Foundation of China (81728012, 81602061), the Natural Science Foundation of Zhejiang Province (LY18H160065), Zhejiang medical and health science and technology plan project (2018KY651), Zhejiang Xinmiao Talents Program (2017R406050), National Undergraduate Training Program for Innovation and Entrepreneurship, Science Foundation of Zhejiang Sci-Tech University (14042107-Y), Graduate research and innovation projects of Zhejiang Sci-Tech University, China. We thank Adalis Maisonet, Terry Haley, and Edward Fox for technical and biostatistical support in the whole transcriptome sequencing.

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design: WO, JAF; Data acquisition: WO, NN, HW, WZ, MZ, AK, DW, GE, GDD, HQ, BL, AM-E, JAF; Analysis and interpretation of data: WO, NN, MZ, AK, GE, AM-E, JAF; Drafting of the manuscript: WO, AM-E, JAF; Technical or material support: WO, GDD, JAF; Study supervision: WO, JAF.

Corresponding authors

Correspondence to Wen-Bin Ou or Jonathan A. Fletcher.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, WB., Ni, N., Zuo, R. et al. Cyclin D1 is a mediator of gastrointestinal stromal tumor KIT-independence. Oncogene 38, 6615–6629 (2019). https://doi.org/10.1038/s41388-019-0894-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0894-3

Search

Quick links