Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activation of sphingosine kinase by lipopolysaccharide promotes prostate cancer cell invasion and metastasis via SphK1/S1PR4/matriptase

Abstract

Gram-negative bacteria have been found to be a major population in prostatitis and prostate cancer (PCa) tissues. Lipopolysaccharide (LPS), a major compound of Gram-negative bacteria, with stimulatory activities in some cancer types, but has not been fully studied in PCa. In this study, we examined the effect of LPS on the invasion of PCa cells. Interestingly, LPS can enhance the invasiveness of PCa, but had no significant effect on PCa cell viability. Using protease inhibitor screening and biochemical analyses, matriptase, a member of the membrane-anchored serine protease family, is found to play a key role in LPS-induced PCa cell invasion. Mechanistically, Toll-like receptor 4 (TLR4, LPS receptor)-sphingosine kinase 1 (SphK1) signaling underlies LPS-induced matriptase activation and PCa cell invasion. Specifically, LPS induced the S225 phosphorylation of SphK1 and the translocation of SphK1 to plasma membrane, leading to the production of sphingosine 1-phosphate (S1P), ERK1/2 and matriptase activation via S1P receptor 4 (S1PR4). This phenomenon is further validated using the patient-derived explant (PDE) model. Indeed, there is a significant correlation among the elevated SphK1 levels, the Gleason grades of PCa specimens, and the poor survival of PCa patients. Taken together, this study demonstrates a potential impact of LPS on PCa progression. Our results provide not only a new finding of the role of bacterial infection in PCa progression but also potential therapeutic target(s) associated with PCa metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Taitt HE. Global trends and prostate cancer: a review of incidence, detection, and mortality as influenced by race, ethnicity, and geographic location. Am J Mens Health. 2018;12:1807–23.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ziaee S, Chu GC, Huang JM, Sieh S, Chung LW. Prostate cancer metastasis: roles of recruitment and reprogramming, cell signal network and three-dimensional growth characteristics. Transl Androl Urol. 2015;4:438–54.

    PubMed  PubMed Central  Google Scholar 

  3. St Hill CA, Lutfiyya MN. An epidemiological analysis of potential associations between C-reactive protein, inflammation, and prostate cancer in the male US population using the 2009-2010 National Health and Nutrition Examination Survey (NHANES) data. Front Chem. 2015;3:55.

    Google Scholar 

  4. Lipsky BA, Byren I, Hoey CT. Treatment of bacterial prostatitis. Clin Infect Dis. 2010;50:1641–52.

    Article  PubMed  Google Scholar 

  5. Simons BW, Durham NM, Bruno TC, Grosso JF, Schaeffer AJ, Ross AE, et al. A human prostatic bacterial isolate alters the prostatic microenvironment and accelerates prostate cancer progression. J Pathol. 2015;235:478–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li J, Yin J, Shen W, Gao R, Liu Y, Chen Y, et al. TLR4 promotes breast cancer metastasis via Akt/GSK3beta/beta-catenin pathway upon LPS stimulation. Anat Rec (Hoboken). 2017;300:1219–29.

    Article  CAS  Google Scholar 

  7. Szajnik M, Szczepanski MJ, Czystowska M, Elishaev E, Mandapathil M, Nowak-Markwitz E, et al. TLR4 signaling induced by lipopolysaccharide or paclitaxel regulates tumor survival and chemoresistance in ovarian cancer. Oncogene. 2009;28:4353–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4:499–511.

    Article  CAS  PubMed  Google Scholar 

  9. Yamamoto M, Sato S, Hemmi H, Sanjo H, Uematsu S, Kaisho T, et al. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature. 2002;420:324–9.

    Article  CAS  PubMed  Google Scholar 

  10. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801.

    Article  CAS  PubMed  Google Scholar 

  11. Gonzalez-Reyes S, Fernandez JM, Gonzalez LO, Aguirre A, Suarez A, Gonzalez JM, et al. Study of TLR3, TLR4, and TLR9 in prostate carcinomas and their association with biochemical recurrence. Cancer Immunol Immunother. 2011;60:217–26.

    Article  CAS  PubMed  Google Scholar 

  12. Maceyka M, Spiegel S. Sphingolipid metabolites in inflammatory disease. Nature. 2014;510:58–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Proia RL, Hla T. Emerging biology of sphingosine-1-phosphate: its role in pathogenesis and therapy. J Clin Invest. 2015;125:1379–87.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pitson SM, Moretti PA, Zebol JR, Lynn HE, Xia P, Vadas MA, et al. Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO J. 2003;22:5491–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pitson SM, Xia P, Leclercq TM, Moretti PA, Zebol JR, Lynn HE, et al. Phosphorylation-dependent translocation of sphingosine kinase to the plasma membrane drives its oncogenic signalling. J Exp Med. 2005;201:49–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Johnson KR, Becker KP, Facchinetti MM, Hannun YA, Obeid LM. PKC-dependent activation of sphingosine kinase 1 and translocation to the plasma membrane. Extracellular release of sphingosine-1-phosphate induced by phorbol 12-myristate 13-acetate (PMA). J Biol Chem. 2002;277:35257–62.

    Article  CAS  PubMed  Google Scholar 

  17. Mukhopadhyay P, Ramanathan R, Takabe K. S1P promotes breast cancer progression by angiogenesis and lymphangiogenesis. Breast Cancer Manag. 2015;4:241–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sordillo LA, Sordillo PP, Helson L. Sphingosine kinase inhibitors as maintenance therapy of glioblastoma after ceramide-induced response. Anticancer Res. 2016;36:2085–95.

    CAS  PubMed  Google Scholar 

  19. Pyne NJ, Tonelli F, Lim KG, Long JS, Edwards J, Pyne S. Sphingosine 1-phosphate signalling in cancer. Biochem Soc Trans. 2012;40:94–100.

    Article  CAS  PubMed  Google Scholar 

  20. Pyne NJ, McNaughton M, Boomkamp S, MacRitchie N, Evangelisti C, Martelli AM, et al. Role of sphingosine 1-phosphate receptors, sphingosine kinases and sphingosine in cancer and inflammation. Adv Biol Regul. 2016;60:151–9.

    Article  CAS  PubMed  Google Scholar 

  21. Salama MF, Carroll B, Adada M, Pulkoski-Gross M, Hannun YA, Obeid LM. A novel role of sphingosine kinase-1 in the invasion and angiogenesis of VHL mutant clear cell renal cell carcinoma. FASEB J. 2015;29:2803–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zeng YE, Yao XH, Yan ZP, Liu JX, Liu XH. Potential signaling pathway involved in sphingosine-1-phosphate-induced epithelial-mesenchymal transition in cancer. Oncol Lett. 2016;12:379–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nunes J, Naymark M, Sauer L, Muhammad A, Keun H, Sturge J, et al. Circulating sphingosine-1-phosphate and erythrocyte sphingosine kinase-1 activity as novel biomarkers for early prostate cancer detection. Br J Cancer. 2012;106:909–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Delon C, Manifava M, Wood E, Thompson D, Krugmann S, Pyne S, et al. Sphingosine kinase 1 is an intracellular effector of phosphatidic acid. J Biol Chem. 2004;279:44763–74.

    Article  CAS  PubMed  Google Scholar 

  25. Beach JA, Aspuria PJ, Cheon DJ, Lawrenson K, Agadjanian H, Walsh CS, et al. Sphingosine kinase 1 is required for TGF-beta mediated fibroblastto- myofibroblast differentiation in ovarian cancer. Oncotarget. 2016;7:4167–82.

    Article  PubMed  Google Scholar 

  26. Werb Z. ECM and cell surface proteolysis: regulating cellular ecology. Cell. 1997;91:439–42.

    Article  CAS  PubMed  Google Scholar 

  27. Ko CJ, Huang CC, Lin HY, Juan CP, Lan SW, Shyu HY, et al. Androgen-induced TMPRSS2 activates matriptase and promotes extracellular matrix degradation, prostate cancer cell invasion, tumor growth, and metastasis. Cancer Res. 2015;75:2949–60.

    Article  CAS  PubMed  Google Scholar 

  28. Tsai CH, Teng CH, Tu YT, Cheng TS, Wu SR, Ko CJ, et al. HAI-2 suppresses the invasive growth and metastasis of prostate cancer through regulation of matriptase. Oncogene. 2014;33:4643–52.

    Article  CAS  PubMed  Google Scholar 

  29. Lee MS. Matrix-degrading type II transmembrane serine protease matriptase: Its role in cancer development and malignancy. J Cancer. Molecules. 2006;2:183–90.

    CAS  Google Scholar 

  30. Benaud C, Oberst M, Hobson JP, Spiegel S, Dickson RB, Lin CY. Sphingosine 1-phosphate, present in serum-derived lipoproteins, activates matriptase. J Biol Chem. 2002;277:10539–46.

    Article  CAS  PubMed  Google Scholar 

  31. Ko CJ, Lan SW, Lu YC, Cheng TS, Lai PF, Tsai CH, et al. Inhibition of cyclooxygenase-2-mediated matriptase activation contributes to the suppression of prostate cancer cell motility and metastasis. Oncogene. 2017;36:4597–609.

    Article  CAS  PubMed  Google Scholar 

  32. Gebhardt C, Hirschberger J, Rau S, Arndt G, Krainer K, Schweigert FJ, et al. Use of C-reactive protein to predict outcome in dogs with systemic inflammatory response syndrome or sepsis. J Vet Emerg Crit Care (San Antonio). 2009;19:450–8.

    Article  Google Scholar 

  33. Lehrer S, Diamond EJ, Mamkine B, Droller MJ, Stone NN, Stock RG. C-reactive protein is significantly associated with prostate-specific antigen and metastatic disease in prostate cancer. BJU Int. 2005;95:961–2.

    Article  CAS  PubMed  Google Scholar 

  34. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18:11–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sevenich L, Joyce JA. Pericellular proteolysis in cancer. Genes Dev. 2014;28:2331–47.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kiyomiya K, Lee MS, Tseng IC, Zuo H, Barndt RJ, Johnson MD, et al. Matriptase activation and shedding with HAI-1 is induced by steroid sex hormones in human prostate cancer cells, but not in breast cancer cells. Am J Physiol. 2006;291:C40–49.

    Article  CAS  Google Scholar 

  37. Pchejetski D, Bohler T, Stebbing J, Waxman J. Therapeutic potential of targeting sphingosine kinase 1 in prostate cancer. Nat Rev Urol. 2011;8:569–678.

    Article  CAS  PubMed  Google Scholar 

  38. Tan Y, Kagan JC. A cross-disciplinary perspective on the innate immune responses to bacterial lipopolysaccharide. Mol Cell. 2014;54:212–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shu X, Wu W, Mosteller RD, Broek D. Sphingosine kinase mediates vascular endothelial growth factor-induced activation of ras and mitogen-activated protein kinases. Mol Cell Biol. 2002;22:7758–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Adams DR, Pyne S, Pyne NJ. Sphingosine kinases: emerging structure-function insights. Trends Biochem Sci. 2016;41:395–409.

    Article  CAS  PubMed  Google Scholar 

  41. Nagahashi M, Takabe K, Terracina KP, Soma D, Hirose Y, Kobayashi T, et al. Sphingosine-1-phosphate transporters as targets for cancer therapy. Biomed Res Int. 2014;2014:651727.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Newman JV, Kosaka T, Sheppard BJ, Fox JG, Schauer DB. Bacterial infection promotes colon tumorigenesis in Apc(Min/+) mice. J Infect Dis. 2001;184:227–30.

    Article  CAS  PubMed  Google Scholar 

  43. Lanoix JP, Pluquet E, Lescure FX, Bentayeb H, Lecuyer E, Boutemy M, et al. Bacterial infection profiles in lung cancer patients with febrile neutropenia. BMC Infect Dis. 2011;11:183.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Vaarala MH, Mehik A, Ohtonen P, Hellstrom PA. Prostate cancer incidence in men with self-reported prostatitis after 15 years of follow-up. Oncol Lett. 2016;12:1149–53.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhan Z, Xie X, Cao H, Zhou X, Zhang XD, Fan H, et al. Autophagy facilitates TLR4- and TLR3-triggered migration and invasion of lung cancer cells through the promotion of TRAF6 ubiquitination. Autophagy. 2014;10:257–68.

    Article  CAS  PubMed  Google Scholar 

  46. Zhu G, Huang Q, Zheng W, Huang Y, Hua J, Yang S, et al. LPS upregulated VEGFR-3 expression promote migration and invasion in colorectal cancer via a mechanism of increased NF-kappaB binding to the promoter of VEGFR-3. Cell Physiol Biochem. 2016;39:1665–78.

    Article  CAS  PubMed  Google Scholar 

  47. Liu X, Zhao W, Wang W, Lin S, Yang L. Puerarin suppresses LPS-induced breast cancer cell migration, invasion and adhesion by blockage NF-kappaB and Erk pathway. Biomed Pharm. 2017;92:429–36.

    Article  CAS  Google Scholar 

  48. Ma D, Zhang RN, Wen Y, Yin WN, Bai D, Zheng GY, et al. 1, 25(OH)2D3-induced interaction of vitamin D receptor with p50 subunit of NF-kappaB suppresses the interaction between KLF5 and p50, contributing to inhibition of LPS-induced macrophage proliferation. Biochem Biophys Res Commun. 2017;482:366–74.

    Article  CAS  PubMed  Google Scholar 

  49. Malavaud B, Pchejetski D, Mazerolles C, de Paiva GR, Calvet C, Doumerc N, et al. Sphingosine kinase-1 activity and expression in human prostate cancer resection specimens. Eur J Cancer. 2010;46:3417–24.

    Article  CAS  PubMed  Google Scholar 

  50. Illuzzi G, Bernacchioni C, Aureli M, Prioni S, Frera G, Donati C, et al. Sphingosine kinase mediates resistance to the synthetic retinoid N-(4-hydroxyphenyl)retinamide in human ovarian cancer cells. J Biol Chem. 2010;285:18594–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cheng JC, Bai A, Beckham TH, Marrison ST, Yount CL, Young K, et al. Radiation-induced acid ceramidase confers prostate cancer resistance and tumor relapse. J Clin Invest. 2013;123:4344–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nakajima M, Nagahashi M, Rashid OM, Takabe K, Wakai T. The role of sphingosine-1-phosphate in the tumor microenvironment and its clinical implications. Tumour Biol. 2017;39:1010428317699133.

    Article  PubMed  Google Scholar 

  53. Syed SN, Jung M, Weigert A, Brune B. S1P provokes tumor lymphangiogenesis via macrophage-derived mediators such as IL-1beta or lipocalin-2. Mediat Inflamm. 2017;2017:7510496.

    Article  Google Scholar 

  54. Liang J, Nagahashi M, Kim EY, Harikumar KB, Yamada A, Huang WC, et al. Sphingosine-1-phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer. Cancer Cell. 2013;23:107–20.

    Article  CAS  PubMed  Google Scholar 

  55. Bi Y, Li J, Ji B, Kang N, Yang L, Simonetto DA, et al. Sphingosine-1-phosphate mediates a reciprocal signaling pathway between stellate cells and cancer cells that promotes pancreatic cancer growth. Am J Pathol. 2014;184:2791–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Weichand B, Popp R, Dziumbla S, Mora J, Strack E, Elwakeel E, et al. S1PR1 on tumor-associated macrophages promotes lymphangiogenesis and metastasis via NLRP3/IL-1beta. J Exp Med. 2017;214:2695–713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Watson C, Long JS, Orange C, Tannahill CL, Mallon E, McGlynn LM, et al. High expression of sphingosine 1-phosphate receptors, S1P1 and S1P3, sphingosine kinase 1, and extracellular signal-regulated kinase-1/2 is associated with development of tamoxifen resistance in estrogen receptor-positive breast cancer patients. Am J Pathol. 2010;177:2205–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ohotski J, Long JS, Orange C, Elsberger B, Mallon E, Doughty J, et al. Expression of sphingosine 1-phosphate receptor 4 and sphingosine kinase 1 is associated with outcome in oestrogen receptor-negative breast cancer. Br J Cancer. 2012;106:1453–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Datta A, Loo SY, Huang B, Wong L, Tan SS, Tan TZ, et al. SPHK1 regulates proliferation and survival responses in triple-negative breast cancer. Oncotarget. 2014;5:5920–33.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Thamilselvan V, Li W, Sumpio BE, Basson MD. Sphingosine-1-phosphate stimulates human Caco-2 intestinal epithelial proliferation via p38 activation and activates ERK by an independent mechanism. Vitr Cell Dev Biol Anim. 2002;38:246–53.

    Article  CAS  Google Scholar 

  61. Visentin B, Vekich JA, Sibbald BJ, Cavalli AL, Moreno KM, Matteo RG, et al. Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell. 2006;9:225–38.

    Article  CAS  PubMed  Google Scholar 

  62. Balthasar S, Samulin J, Ahlgren H, Bergelin N, Lundqvist M, Toescu EC, et al. Sphingosine 1-phosphate receptor expression profile and regulation of migration in human thyroid cancer cells. Biochem J. 2006;398:547–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kalhori V, Tornquist K. MMP2 and MMP9 participate in S1P-induced invasion of follicular ML-1 thyroid cancer cells. Mol Cell Endocrinol. 2015;404:113–22.

    Article  CAS  PubMed  Google Scholar 

  64. Guo YX, Ma YJ, Han L, Wang YJ, Han JA, Zhu Y. Role of sphingosine 1-phosphate in human pancreatic cancer cells proliferation and migration. Int J Clin Exp Med. 2015;8:20349–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim ES, Kim JS, Kim SG, Hwang S, Lee CH, Moon A. Sphingosine 1-phosphate regulates matrix metalloproteinase-9 expression and breast cell invasion through S1P3-Galphaq coupling. J Cell Sci. 2011;124:2220–30.

    Article  CAS  PubMed  Google Scholar 

  66. Li MH, Sanchez T, Yamase H, Hla T, Oo ML, Pappalardo A, et al. S1P/S1P1 signaling stimulates cell migration and invasion in Wilms tumor. Cancer Lett. 2009;276:171–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shida D, Fang X, Kordula T, Takabe K, Lepine S, Alvarez SE, et al. Cross-talk between LPA1 and epidermal growth factor receptors mediates up-regulation of sphingosine kinase 1 to promote gastric cancer cell motility and invasion. Cancer Res. 2008;68:6569–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang D, Zhao Z, Caperell-Grant A, Yang G, Mok SC, Liu J, et al. S1P differentially regulates migration of human ovarian cancer and human ovarian surface epithelial cells. Mol Cancer Ther. 2008;7:1993–2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Park KS, Kim MK, Lee HY, Kim SD, Lee SY, Kim JM, et al. S1P stimulates chemotactic migration and invasion in OVCAR3 ovarian cancer cells. Biochem Biophys Res Commun. 2007;356:239–44.

    Article  CAS  PubMed  Google Scholar 

  70. Devine KM, Smicun Y, Hope JM, Fishman DA. S1P induced changes in epithelial ovarian cancer proteolysis, invasion, and attachment are mediated by Gi and Rac. Gynecol Oncol. 2008;110:237–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Miller AV, Alvarez SE, Spiegel S, Lebman DA. Sphingosine kinases and sphingosine-1-phosphate are critical for transforming growth factor beta-induced extracellular signal-regulated kinase 1 and 2 activation and promotion of migration and invasion of esophageal cancer cells. Mol Cell Biol. 2008;28:4142–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Asghar MY, Kemppainen K, Lassila T, Tornquist K. Sphingosine 1-phosphate attenuates MMP2 and MMP9 in human anaplastic thyroid cancer C643 cells: Importance of S1P2. PLoS ONE. 2018;13:e0196992.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Koh E, Clair T, Hermansen R, Bandle RW, Schiffmann E, Roberts DD, et al. Sphingosine-1-phosphate initiates rapid retraction of pseudopodia by localized RhoA activation. Cell Signal. 2007;19:1328–38.

    Article  CAS  PubMed  Google Scholar 

  74. Rosenberg AJ, Liu H, Tu Z. A practical process for the preparation of [(32)P]S1P and binding assay for S1P receptor ligands. Appl Radiat Isot. 2015;102:5–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fleming JK, Glass TR, Lackie SJ, Wojciak JM. A novel approach for measuring sphingosine-1-phosphate and lysophosphatidic acid binding to carrier proteins using monoclonal antibodies and the Kinetic Exclusion Assay. J Lipid Res. 2016;57:1737–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yatomi Y. Plasma sphingosine 1-phosphate metabolism and analysis. Biochim Biophys Acta. 2008;1780:606–11.

    Article  CAS  PubMed  Google Scholar 

  77. Lee SL, Dickson RB, Lin CY. Activation of hepatocyte growth factor and urokinase/plasminogen activator by matriptase, an epithelial membrane serine protease. J Biol Chem. 2000;275:36720–5.

    Article  CAS  PubMed  Google Scholar 

  78. Young N, Pearl DK, Van Brocklyn JR. Sphingosine-1-phosphate regulates glioblastoma cell invasiveness through the urokinase plasminogen activator system and CCN1/Cyr61. Mol Cancer Res. 2009;7:23–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wu SR, Cheng TS, Chen WC, Shyu HY, Ko CJ, Huang HP, et al. Matriptase is involved in ErbB-2-induced prostate cancer cell invasion. Am J Pathol. 2010;177:3145–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lin CY, Tseng IC, Chou FP, Su SF, Chen YW, Johnson MD, et al. Zymogen activation, inhibition, and ectodomain shedding of matriptase. Front Biosci. 2008;13:621–35.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the United States Army (W81XWH-11-1-0491 and W81XWH-16-1-0474) to Jer-Tsong Hsieh, and by Taiwan National Science Council Grant NSC 100-2628-B-002-004-MY4, Ministry of Science and Technology Grants (MOST 103-2321-B-002-096, MOST 104-2320-B-002-044- MY3, MOST 104-2911-I-002-578, MOST 105-2911-I-002-521 and MOST 106-2320-B-002-046-MY3), National Health Research Institutes Grant (NHRI-EX102-9909BC and NHRI-EX106-10401BI), and National Taiwan University Grant NTU-CESRP-104R7602C4 and 107L890504 to Ming-Shyue Lee. We thank Dr. Bink W. Wattenberg at James Graham Brown Cancer Center for SphK1 plasmid, Dr. Ming-Fong Lin at the University of Nebraska Medical Center for human prostate cancer cell lines, Dr. Chen-Yong Lin at the Georgetown University for his gifts of antibodies and I-Wen Huang and Kuan-Jin Yu for their technical supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jer-Tsong Hsieh or Ming-Shyue Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, CF., Dang, A., Hernandez, E. et al. Activation of sphingosine kinase by lipopolysaccharide promotes prostate cancer cell invasion and metastasis via SphK1/S1PR4/matriptase. Oncogene 38, 5580–5598 (2019). https://doi.org/10.1038/s41388-019-0833-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0833-3

This article is cited by

Search

Quick links