Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GPNMB augments Wnt-1 mediated breast tumor initiation and growth by enhancing PI3K/AKT/mTOR pathway signaling and β-catenin activity

Abstract

Glycoprotein Nmb (GPNMB) is overexpressed in triple-negative and basal-like breast cancers and its expression is predictive of poor prognosis within this aggressive breast cancer subtype. GPNMB promotes breast cancer growth, invasion, and metastasis; however, its role in mammary tumor initiation remains unknown. To address this question, we overexpressed GPNMB in the mammary epithelium to generate MMTV/GPNMB transgenic mice and crossed these animals to the MMTV/Wnt-1 mouse model, which is known to recapitulate features of human basal breast cancers. We show that GPNMB alone does not display oncogenic properties; however, its expression dramatically accelerates tumor onset in MMTV/Wnt-1 mice. MMTV/Wnt-1 × MMTV/GPNMB bigenic mice also exhibit a significant increase in the growth rate of established primary tumors, which is attributable to increased proliferation and decreased apoptosis. To elucidate molecular mechanisms underpinning the tumor-promoting effects of GPNMB in this context, we interrogated activated pathways in tumors derived from the MMTV/Wnt-1 and MMTV/Wnt-1 × MMTV/GPNMB mice using RPPA analysis. These data revealed that MMTV/Wnt-1 × MMTV/GPNMB bigenic tumors exhibit a pro-growth signature characterized by elevated PI3K/AKT/mTOR signaling and increased β-catenin activity. Furthermore, we extended these observations to an independent Wnt-1 expressing model of aggressive breast cancer, and confirmed that GPNMB enhances canonical Wnt pathway activation, as evidenced by increased β-catenin transcriptional activity, in breast cancer cells and tumors co-expressing Wnt-1 and GPNMB. GPNMB-dependent engagement of β-catenin occurred, in part, through AKT activation. Taken together, these data ascribe a novel, pro-growth role for GPNMB in Wnt-1 expressing basal breast cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Marusyk A, Almendro V, Polyak K. Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer. 2012;12:323–34.

    Article  CAS  Google Scholar 

  2. Prat A, Adamo B, Cheang MC, Anders CK, Carey LA, Perou CM. Molecular characterization of basal-like and non-basal-like triple-negative breast cancer. Oncologist. 2013;18:123–33.

    Article  CAS  Google Scholar 

  3. Prat A, Perou CM. Deconstructing the molecular portraits of breast cancer. Mol Oncol. 2011;5:5–23.

    Article  CAS  Google Scholar 

  4. Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70.

    Article  Google Scholar 

  5. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486:346–52.

    Article  CAS  Google Scholar 

  6. Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol. 2016;13:674–90.

    Article  CAS  Google Scholar 

  7. Sharma P. Biology and Management of Patients With Triple-Negative Breast Cancer. Oncologist. 2016;21:1050–62.

    Article  Google Scholar 

  8. Maric G, Rose AA, Annis MG, Siegel PM. Glycoprotein non-metastatic b (GPNMB): A metastatic mediator and emerging therapeutic target in cancer. Onco Targets Ther. 2013;6:839–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Rose AAN, Biondini M, Curiel R, Siegel PM. Targeting GPNMB with glembatumumab vedotin: Current developments and future opportunities for the treatment of cancer. Pharmacol Ther. 2017;179:127–41.

    Article  CAS  Google Scholar 

  10. Rose AA, Grosset AA, Dong Z, Russo C, Macdonald PA, Bertos NR, et al. Glycoprotein nonmetastatic B is an independent prognostic indicator of recurrence and a novel therapeutic target in breast cancer. Clin Cancer Res: Off J Am Assoc Cancer Res. 2010;16:2147–56.

    Article  CAS  Google Scholar 

  11. Rose AA, Annis MG, Dong Z, Pepin F, Hallett M, Park M, et al. ADAM10 releases a soluble form of the GPNMB/Osteoactivin extracellular domain with angiogenic properties. PLoS ONE. 2010;5:e12093.

    Article  Google Scholar 

  12. Kanematsu M, Futamura M, Takata M, Gaowa S, Yamada A, Morimitsu K, et al. Clinical significance of glycoprotein nonmetastatic B and its association with HER2 in breast cancer. Cancer Med. 2015;4:1344–55.

    Article  CAS  Google Scholar 

  13. Maric G, Annis MG, Dong Z, Rose AA, Ng S, Perkins D, et al. GPNMB cooperates with neuropilin-1 to promote mammary tumor growth and engages integrin ɑ5β1 for efficient breast cancer metastasis. Oncogene. 2015;34:5494–5504.

    Article  CAS  Google Scholar 

  14. Rose AA, Pepin F, Russo C, Abou Khalil JE, Hallett M, Siegel PM. Osteoactivin promotes breast cancer metastasis to bone. Mol Cancer Res. 2007;5:1001–14.

    Article  CAS  Google Scholar 

  15. Okita Y, Kimura M, Xie R, Chen C, Shen LT, Kojima Y, et al. The transcription factor MAFK induces EMT and malignant progression of triple-negative breast cancer cells through its target GPNMB. Sci Signal. 2017;10:474.

    Article  Google Scholar 

  16. Lin A, Li C, Xing Z, Hu Q, Liang K, Han L, et al. The LINK-A lncRNA activates normoxic HIF1alpha signalling in triple-negative breast cancer. Nat Cell Biol. 2016;18:213–24.

    Article  CAS  Google Scholar 

  17. Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z, et al. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol. 2007;8:R76.

    Article  Google Scholar 

  18. Pfefferle AD, Herschkowitz JI, Usary J, Harrell JC, Spike BT, Adams JR, et al. Transcriptomic classification of genetically engineered mouse models of breast cancer identifies human subtype counterparts. Genome Biol. 2013;14:R125.

    Article  Google Scholar 

  19. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001;98:10869–74.

    Article  CAS  Google Scholar 

  20. Li Y, Hively WP, Varmus HE. Use of MMTV-Wnt-1 transgenic mice for studying the genetic basis of breast cancer. Oncogene. 2000;19:1002–9.

    Article  CAS  Google Scholar 

  21. Li Y, Welm B, Podsypanina K, Huang S, Chamorro M, Zhang X, et al. Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci USA. 2003;100:15853–8.

    Article  CAS  Google Scholar 

  22. Huang S, Li Y, Chen Y, Podsypanina K, Chamorro M, Olshen AB, et al. Changes in gene expression during the development of mammary tumors in MMTV-Wnt-1 transgenic mice. Genome Biol. 2005;6:R84.

    Article  Google Scholar 

  23. Howe LR, Brown AM. Wnt signaling and breast cancer. Cancer Biol Ther. 2004;3:36–41.

    Article  CAS  Google Scholar 

  24. van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A, et al. The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell. 2002;111:241–50.

    Article  Google Scholar 

  25. Khramtsov AI, Khramtsova GF, Tretiakova M, Huo D, Olopade OI, Goss KH. Wnt/beta-catenin pathway activation is enriched in basal-like breast cancers and predicts poor outcome. Am J Pathol. 2010;176:2911–20.

    Article  Google Scholar 

  26. Geyer FC, Lacroix-Triki M, Savage K, Arnedos M, Lambros MB, MacKay A, et al. beta-Catenin pathway activation in breast cancer is associated with triple-negative phenotype but not with CTNNB1 mutation. Mod Pathol. 2011;24:209–31.

    Article  CAS  Google Scholar 

  27. Lopez-Knowles E, O’Toole SA, McNeil CM, Millar EK, Qiu MR, Crea P, et al. PI3K pathway activation in breast cancer is associated with the basal-like phenotype and cancer-specific mortality. Int J Cancer. 2010;126:1121–31.

    Article  CAS  Google Scholar 

  28. Li S, Li S, Sun Y, Li L. The expression of beta-catenin in different subtypes of breast cancer and its clinical significance. Tumour Biol. 2014;35:7693–8.

    Article  CAS  Google Scholar 

  29. Bankfalvi A, Ludwig A, De-Hesselle B, Buerger H, Buchwalow IB, Boecker W. Different proliferative activity of the glandular and myoepithelial lineages in benign proliferative and early malignant breast diseases. Mod Pathol. 2004;17:1051–61.

    Article  Google Scholar 

  30. Bocker W, Moll R, Poremba C, Holland R, Van Diest PJ, Dervan P, et al. Common adult stem cells in the human breast give rise to glandular and myoepithelial cell lineages: a new cell biological concept. Lab Invest. 2002;82:737–46.

    Article  Google Scholar 

  31. Vargo-Gogola T, Rosen JM. Modelling breast cancer: one size does not fit all. Nat Rev Cancer. 2007;7:659–72.

    Article  CAS  Google Scholar 

  32. Nieto AI, Shyamala G, Galvez JJ, Thordarson G, Wakefield LM, Cardiff RD. Persistent mammary hyperplasia in FVB/N mice. Comp Med. 2003;53:433–8.

    CAS  PubMed  Google Scholar 

  33. Wakefield LM, Thordarson G, Nieto AI, Shyamala G, Galvez JJ, Anver MR, et al. Spontaneous pituitary abnormalities and mammary hyperplasia in FVB/NCr mice: implications for mouse modeling. Comp Med. 2003;53:424–32.

    CAS  PubMed  Google Scholar 

  34. Lim E, Wu D, Pal B, Bouras T, Asselin-Labat ML, Vaillant F, et al. Transcriptome analyses of mouse and human mammary cell subpopulations reveal multiple conserved genes and pathways. Breast Cancer Res. 2010;12:R21.

    Article  Google Scholar 

  35. Robles AI, Varticovski L. Harnessing genetically engineered mouse models for preclinical testing. Chem Biol Interact. 2008;171:159–64.

    Article  CAS  Google Scholar 

  36. Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D, et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature. 2006;439:353–7.

    Article  CAS  Google Scholar 

  37. Huang S, Chen Y, Podsypanina K, Li Y. Comparison of expression profiles of metastatic versus primary mammary tumors in MMTV-Wnt-1 and MMTV-Neu transgenic mice. Neoplasia. 2008;10:118–24.

    Article  CAS  Google Scholar 

  38. Maubant S, Tesson B, Maire V, Ye M, Rigaill G, Gentien D, et al. Transcriptome analysis of Wnt3a-treated triple-negative breast cancer cells. PLoS ONE. 2015;10:e0122333.

    Article  Google Scholar 

  39. Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell. 2007;129:1261–74.

    Article  CAS  Google Scholar 

  40. Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell. 2007;12:9–22.

    Article  CAS  Google Scholar 

  41. Failor KL, Desyatnikov Y, Finger LA, Firestone GL. Glucocorticoid-induced degradation of glycogen synthase kinase-3 protein is triggered by serum- and glucocorticoid-induced protein kinase and Akt signaling and controls beta-catenin dynamics and tight junction formation in mammary epithelial tumor cells. Mol Endocrinol. 2007;21:2403–15.

    Article  CAS  Google Scholar 

  42. Nusse R, Clevers H. Wnt/beta-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell. 2017;169:985–99.

    Article  CAS  Google Scholar 

  43. Taelman VF, Dobrowolski R, Plouhinec JL, Fuentealba LC, Vorwald PP, Gumper I, et al. Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes. Cell. 2010;143:1136–48.

    Article  CAS  Google Scholar 

  44. Xu J, Chen Y, Huo D, Khramtsov A, Khramtsova G, Zhang C, et al. beta-catenin regulates c-Myc and CDKN1A expression in breast cancer cells. Mol Carcinog. 2016;55:431–9.

    Article  Google Scholar 

  45. Cadigan KM, Waterman ML. TCF/LEFs and Wnt signaling in the nucleus. Cold Spring Harb Perspect Biol. 2012;4:11.

    Article  Google Scholar 

  46. Conacci-Sorrell M, Simcha I, Ben-Yedidia T, Blechman J, Savagner P, Ben-Ze’ev A. Autoregulation of E-cadherin expression by cadherin-cadherin interactions: the roles of beta-catenin signaling, Slug, and MAPK. J Cell Biol. 2003;163:847–57.

    Article  CAS  Google Scholar 

  47. Watanabe K, Biesinger J, Salmans ML, Roberts BS, Arthur WT, Cleary M, et al. Integrative ChIP-seq/microarray analysis identifies a CTNNB1 target signature enriched in intestinal stem cells and colon cancer. PLoS ONE. 2014;9:e92317.

    Article  Google Scholar 

  48. Chen C, Okita Y, Watanabe Y, Abe F, Fikry MA, Ichikawa Y, et al. Glycoprotein nmb Is Exposed on the Surface of Dormant Breast Cancer Cells and Induces Stem Cell-like Properties. Cancer Res. 2018;78:6424–35.

    CAS  PubMed  Google Scholar 

  49. Ding VW, Chen RH, McCormick F. Differential regulation of glycogen synthase kinase 3beta by insulin and Wnt signaling. J Biol Chem. 2000;275:32475–81.

    Article  CAS  Google Scholar 

  50. Perry JM, He XC, Sugimura R, Grindley JC, Haug JS, Ding S, et al. Cooperation between both Wnt/{beta}-catenin and PTEN/PI3K/Akt signaling promotes primitive hematopoietic stem cell self-renewal and expansion. Genes Dev. 2011;25:1928–42.

    Article  CAS  Google Scholar 

  51. Korkaya H, Paulson A, Charafe-Jauffret E, Ginestier C, Brown M, Dutcher J, et al. Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling. PLoS Biol. 2009;7:e1000121.

    Article  Google Scholar 

  52. Mulholland DJ, Dedhar S, Wu H, Nelson CC. PTEN and GSK3beta: key regulators of progression to androgen-independent prostate cancer. Oncogene. 2006;25:329–37.

    Article  CAS  Google Scholar 

  53. Yuan H, Mao J, Li L, Wu D. Suppression of glycogen synthase kinase activity is not sufficient for leukemia enhancer factor-1 activation. J Biol Chem. 1999;274:30419–23.

    Article  CAS  Google Scholar 

  54. Davies BR, Greenwood H, Dudley P, Crafter C, Yu DH, Zhang J, et al. Preclinical pharmacology of AZD5363, an inhibitor of AKT: pharmacodynamics, antitumor activity, and correlation of monotherapy activity with genetic background. Mol Cancer Ther. 2012;11:873–87.

    Article  CAS  Google Scholar 

  55. Lin J, Sampath D, Nannini MA, Lee BB, Degtyarev M, Oeh J, et al. Targeting activated Akt with GDC-0068, a novel selective Akt inhibitor that is efficacious in multiple tumor models. Clin Cancer Res: Off J Am Assoc Cancer Res. 2013;19:1760–72.

    Article  CAS  Google Scholar 

  56. Donehower LA, Godley LA, Aldaz CM, Pyle R, Shi YP, Pinkel D, et al. Deficiency of p53 accelerates mammary tumorigenesis in Wnt-1 transgenic mice and promotes chromosomal instability. Genes Dev. 1995;9:882–95.

    Article  CAS  Google Scholar 

  57. Kapoun AM, Shackleford GM. Preferential activation of Fgf8 by proviral insertion in mammary tumors of Wnt1 transgenic mice. Oncogene. 1997;14:2985–9.

    Article  CAS  Google Scholar 

  58. Kwan H, Pecenka V, Tsukamoto A, Parslow TG, Guzman R, Lin TP, et al. Transgenes expressing the Wnt-1 and int-2 proto-oncogenes cooperate during mammary carcinogenesis in doubly transgenic mice. Mol Cell Biol. 1992;12:147–54.

    Article  CAS  Google Scholar 

  59. Li Y, Podsypanina K, Liu X, Crane A, Tan LK, Parsons R, et al. Deficiency of Pten accelerates mammary oncogenesis in MMTV-Wnt-1 transgenic mice. BMC Mol Biol. 2001;2:2.

    Article  CAS  Google Scholar 

  60. Podsypanina K, Li Y, Varmus HE. Evolution of somatic mutations in mammary tumors in transgenic mice is influenced by the inherited genotype. BMC Med. 2004;2:24.

    Article  Google Scholar 

  61. Shackleford GM, MacArthur CA, Kwan HC, Varmus HE. Mouse mammary tumor virus infection accelerates mammary carcinogenesis in Wnt-1 transgenic mice by insertional activation of int-2/Fgf-3 and hst/Fgf-4. Proc Natl Acad Sci USA. 1993;90:740–4.

    Article  CAS  Google Scholar 

  62. Jin R, Jin YY, Tang YL, Yang HJ, Zhou XQ, Lei Z. GPNMB silencing suppresses the proliferation and metastasis of osteosarcoma cells by blocking the PI3K/Akt/mTOR signaling pathway. Oncol Rep. 2018;39:3034–40.

    CAS  PubMed  Google Scholar 

  63. Ono Y, Chiba S, Yano H, Nakayama N, Saio M, Tsuruma K, et al. Glycoprotein nonmetastatic melanoma protein B (GPNMB) promotes the progression of brain glioblastoma via Na(+)/K(+)-ATPase. Biochem Biophys Res Commun. 2016;481:7–12.

    Article  CAS  Google Scholar 

  64. Yu B, Sondag GR, Malcuit C, Kim MH, Safadi FF. Macrophage-Associated Osteoactivin/GPNMB Mediates Mesenchymal Stem Cell Survival, Proliferation, and Migration Via a CD44-Dependent Mechanism. J Cell Biochem. 2016;117:1511–21.

    Article  CAS  Google Scholar 

  65. Nagahara Y, Shimazawa M, Ohuchi K, Ito J, Takahashi H, Tsuruma K, et al. GPNMB ameliorates mutant TDP-43-induced motor neuron cell death. J Neurosci Res. 2017;95:1647–65.

    Article  CAS  Google Scholar 

  66. Bao G, Wang N, Li R, Xu G, Liu P, He B. Glycoprotein non-metastaticmelanoma protein B promotes glioma motility and angiogenesis through the Wnt/beta-catenin signaling pathway. Exp Biol Med (Maywood). 2016;241:1968–76.

    Article  CAS  Google Scholar 

  67. Zhang YX, Qin CP, Zhang XQ, Wang QR, Zhao CB, Yuan YQ, et al. Knocking down glycoprotein nonmetastatic melanoma protein B suppresses the proliferation, migration, and invasion in bladder cancer cells. Tumour Biol. 2017;39:1010428317699119.

    PubMed  Google Scholar 

  68. Musgrove EA. Wnt signalling via the epidermal growth factor receptor: a role in breast cancer? Breast Cancer Res. 2004;6:65–8.

    Article  CAS  Google Scholar 

  69. Hu T, Li C. Convergence between Wnt-beta-catenin and EGFR signaling in cancer. Mol Cancer. 2010;9:236.

    Article  Google Scholar 

  70. Schroeder JA, Troyer KL, Lee DC. Cooperative induction of mammary tumorigenesis by TGFalpha and Wnts. Oncogene. 2000;19:3193–9.

    Article  CAS  Google Scholar 

  71. Schroeder JA, Adriance MC, McConnell EJ, Thompson MC, Pockaj B, Gendler SJ. ErbB-beta-catenin complexes are associated with human infiltrating ductal breast and murine mammary tumor virus (MMTV)-Wnt-1 and MMTV-c-Neu transgenic carcinomas. J Biol Chem. 2002;277:22692–8.

    Article  CAS  Google Scholar 

  72. Yardley DA, Weaver R, Melisko ME, Saleh MN, Arena FP, Forero A, et al. EMERGE: A randomized phase II study of the antibody-drug conjugate glembatumumab vedotin in advanced glycoprotein NMB-expressing breast cancer. J Clin Oncol. 2015;33:1609–19.

    Article  CAS  Google Scholar 

  73. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281–308.

    Article  CAS  Google Scholar 

  74. Iadevaia S, Lu Y, Morales FC, Mills GB, Ram PT. Identification of optimal drug combinations targeting cellular networks: integrating phospho-proteomics and computational network analysis. Cancer Res. 2010;70:6704–14.

    Article  CAS  Google Scholar 

  75. Northey JJ, Chmielecki J, Ngan E, Russo C, Annis MG, Muller WJ, et al. Signaling through ShcA is required for transforming growth factor beta- and Neu/ErbB-2-induced breast cancer cell motility and invasion. Mol Cell Biol. 2008;28:3162–76.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Goodman Cancer Research Centre (GCRC) transgenic facility (McGill University) for generation of the MMTV/GPNMB mice, the GCRC histology core facility (McGill University) for routine histological services and Zhifeng Dong for some Immunohistochemical staining. We thank members of the Siegel laboratory for thoughtful discussions and critical reading of the manuscript. GM acknowledges studentship support from the Canadian Institutes for Health Research (CIHR). PMS is currently a McGill University William Dawson Scholar. This research was supported solely by grants from the CIHR (MOP-119401; PJT-153327).

Author contributions

GM, MGA, and PMS designed research; GM and MGA performed experiments; PM, CR, MGA, and DP generated reagents used in this study; DRS and GM performed and analyzed the RPPA analysis; GM, MGA, and PMS analyzed/interpreted data and GM, MGA, and PMS wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. Siegel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplmental Materials

41388_2019_793_MOESM2_ESM.pptx

Supplementary Figure 1. MMTV/GPNMB transgenic mice express GPNMB in the mammary ductal epithelium and display normal virgin mammary gland development

Supplementary Figure 2. Tumor incidence in virgin and multiparous MMTV/GPNMB Mice

Supplementary Figure 3. Immunohistochemistry and Immunoblots of MMTV/Wnt-1 and MMTV/Wnt-1 x MMTV/GPNMB tumors

41388_2019_793_MOESM5_ESM.pptx

Supplementary Figure 4. Immunohistochemistry of MMTV/Wnt-1 and MMTV/Wnt-1 x MMTV/GPNMB tumors to validate targets of the mTOR pathway

41388_2019_793_MOESM6_ESM.pptx

Supplementary Figure 5. Immunoblot analysis of epithelial and mesenchymal markers in 4T1-533LM and transgenic derived mammary tumors

Supplementary Table 1: Raw RPPA data

Supplementary Table 2: Targets significantly up- or down- regulated by GPNMB expression

Supplementary Table 3: A list of oligonucleotide sequences used in the current study

Supplementary Table 4: A list of antibodies used in the current study

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maric, G., Annis, M.G., MacDonald, P.A. et al. GPNMB augments Wnt-1 mediated breast tumor initiation and growth by enhancing PI3K/AKT/mTOR pathway signaling and β-catenin activity. Oncogene 38, 5294–5307 (2019). https://doi.org/10.1038/s41388-019-0793-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0793-7

This article is cited by

Search

Quick links