Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Delta-like 1 homologue promotes tumorigenesis and epithelial-mesenchymal transition of ovarian high-grade serous carcinoma through activation of Notch signaling

Abstract

Ovarian carcinoma is the most lethal type of gynecologic malignancies. Alterations of Notch pathway are prevalent in ovarian carcinogenesis. This study investigated the expression profile and function of delta-like 1 homolog (DLK1), a non-canonical Notch ligand, during ovarian carcinogenesis. Tissue microarray (TMA) consisting of surgically resected samples from 221 patients with ovarian carcinoma was constructed for DLK1 expression. DLK1 overexpression or knockdown was achieved by adenovirus gene delivery to evaluate the effect of DLK1 on the oncogenic behaviors in ovarian cancer cells and in xenografted tumors. TMA analysis revealed that elevated DLK1 expression was correlated with stages, lymph node metastasis and E-cadherin downregulation. Despite no influence on survival among ovarian carcinoma patients, DLK1 overexpression was specially associated with overall survival and progression free survival in high-grade serous carcinoma (HGSC) patients, constituting an independent prognostic factor for these patients. By adenovirus gene delivery, it was found modulation of cellular DLK1 level regulated the tumorigenic behaviors and epithelial-mesenchymal transition (EMT) in vitro and in vivo. Immunohistochemical analysis further showed that DLK1 overexpression resulted in escalated proliferation, angiogenesis, EMT and Notch activities. Application of recombinant DLK1 extracellular domain (rDLK1-EC) recapitulated the tumorigenic behaviors of DLK1 in ovarian cancer cells. By using neutralizing antibody or pharmaceutical inhibitor, blockade of Notch signaling attenuated the tumorigenic behaviors evoked by DLK1 overexpression. The present study indicates that DLK1 overexpression participates in ovarian carcinogenesis through Notch activation and EMT induction. Moreover, DLK1 may constitute a novel diagnostic biomarker and therapeutic target for HGSC.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67:7–30.

    Article  Google Scholar 

  2. Kurman RJ, Shih IeM. The dualistic model of ovarian carcinogenesis: revisited, revised, and expanded. Am J Pathol. 2016;186:733–47.

    Article  Google Scholar 

  3. Kurman RJ, Shih IeM. The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory. Am J Surg Pathol. 2010;34:433–43.

    Article  Google Scholar 

  4. Shih IeM, Wang TL. Notch signaling, gamma-secretase inhibitors, and cancer therapy. Cancer Res. 2007;67:1879–82.

    Article  CAS  Google Scholar 

  5. Bell D, Berchuck A, Birrer M, Chien J, Cramer D, Dao F. et al. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474:609–15.

    Article  CAS  Google Scholar 

  6. Choi JH, Park JT, Davidson B, Morin PJ, Shih Ie M, Wang TL. Jagged-1 and Notch3 juxtacrine loop regulates ovarian tumor growth and adhesion. Cancer Res. 2008;68:5716–23.

    Article  CAS  Google Scholar 

  7. Chen X, Stoeck A, Lee SJ, Shih Ie M, Wang MM, Wang TL. Jagged1 expression regulated by Notch3 and Wnt/beta-catenin signaling pathways in ovarian cancer. Oncotarget. 2010;1:210–8.

    PubMed  PubMed Central  Google Scholar 

  8. Zhang L, Volinia S, Bonome T, Calin GA, Greshock J, Yang N, et al. Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proc Natl Acad Sci Usa. 2008;105:7004–9.

    Article  CAS  Google Scholar 

  9. Nueda ML, Garcia-Ramirez JJ, Laborda J, Baladron V. dlk1 specifically interacts with insulin-like growth factor binding protein 1 to modulate adipogenesis of 3T3-L1 cells. J Mol Biol. 2008;379:428–42.

    Article  CAS  Google Scholar 

  10. Abdallah BM, Boissy P, Tan Q, Dahlgaard J, Traustadottir GA, Kupisiewicz K, et al. dlk1/FA1 regulates the function of human bone marrow mesenchymal stem cells by modulating gene expression of pro-inflammatory cytokines and immune response-related factors. J Biol Chem. 2007;282:7339–51.

    Article  CAS  Google Scholar 

  11. Liu Y, Tan J, Li L, Li S, Zou S, Zhang Y, et al. Study on the molecular mechanisms of dlk1 stimulated lung cancer cell proliferation. Zhongguo Fei Ai Za Zhi. 2010;13:923–7.

    CAS  PubMed  Google Scholar 

  12. Yanai H, Nakamura K, Hijioka S, Kamei A, Ikari T, Ishikawa Y, et al. Dlk-1, a cell surface antigen on foetal hepatic stem/progenitor cells, is expressed in hepatocellular, colon, pancreas and breast carcinomas at a high frequency. J Biochem. 2010;148:85–92.

    Article  CAS  Google Scholar 

  13. Ceder JA, Jansson L, Helczynski L, Abrahamsson PA. Delta-like 1 (Dlk-1), a novel marker of prostate basal and candidate epithelial stem cells, is downregulated by notch signalling in intermediate/transit amplifying cells of the human prostate. Eur Urol. 2008;54:1344–53.

    Article  Google Scholar 

  14. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–90.

    Article  CAS  Google Scholar 

  15. Klymenko Y, Kim O, Stack MS. Complex determinants of epithelial: mesenchymal phenotypic plasticity in ovarian cancer. Cancers (Basel). 2017;9:1–32.

    Article  Google Scholar 

  16. Huang CC, Kuo HM, Wu PC, Cheng SH, Chang TT, Chang YC, et al. Correction to: soluble delta-like 1 homolog (DLK1) stimulates angiogenesis through Notch1/Akt/eNOS signaling in endothelial cells. Angiogenesis. 2018;21:901.

    Article  CAS  Google Scholar 

  17. Ma Z, Cai H, Zhang Y, Chang L, Cui Y. MiR-129-5p inhibits non-small cell lung cancer cell stemness and chemoresistance through targeting DLK1. Biochem Biophys Res Commun. 2017;490:309–16.

    Article  CAS  Google Scholar 

  18. Li L, Tan J, Zhang Y, Han N, Di X, Xiao T, et al. DLK1 promotes lung cancer cell invasion through upregulation of MMP9 expression depending on Notch signaling. PLoS ONE. 2014;9:e91509.

    Article  Google Scholar 

  19. Baladron V, Ruiz-Hidalgo MJ, Gubina E, Bonvini E, Laborda J. Specific regions of the extracellular domain of dlk, an EGF-like homeotic protein involved in differentiation, participate in intramolecular interactions. Front Biosci. 2001;6:A25–32.

    Article  CAS  Google Scholar 

  20. Laborda J. The role of the epidermal growth factor-like protein dlk in cell differentiation. Histol Histopathol. 2000;15:119–29.

    CAS  PubMed  Google Scholar 

  21. Smas CM, Sul HS. Molecular mechanisms of adipocyte differentiation and inhibitory action of pref-1. Crit Rev Eukaryot Gene Expr. 1997;7:281–98.

    Article  CAS  Google Scholar 

  22. Smas CM, Sul HS. Pref-1, a protein containing EGF-like repeats, inhibits adipocyte differentiation. Cell. 1993;73:725–34.

    Article  CAS  Google Scholar 

  23. Smas CM, Chen L, Sul HS. Cleavage of membrane-associated pref-1 generates a soluble inhibitor of adipocyte differentiation. Mol Cell Biol. 1997;17:977–88.

    Article  CAS  Google Scholar 

  24. Huang J, Zhang X, Zhang M, Zhu JD, Zhang YL, Lin Y, et al. Up-regulation of DLK1 as an imprinted gene could contribute to human hepatocellular carcinoma. Carcinogenesis. 2007;28:1094–103.

    Article  CAS  Google Scholar 

  25. Yin D, Xie D, Sakajiri S, Miller CW, Zhu H, Popoviciu ML, et al. DLK1: increased expression in gliomas and associated with oncogenic activities. Oncogene. 2006;25:1852–61.

    Article  CAS  Google Scholar 

  26. Kawakami T, Chano T, Minami K, Okabe H, Okada Y, Okamoto K. Imprinted DLK1 is a putative tumor suppressor gene and inactivated by epimutation at the region upstream of GTL2 in human renal cell carcinoma. Hum Mol Genet. 2006;15:821–30.

    Article  CAS  Google Scholar 

  27. Wang Y, Sul HS. Ectodomain shedding of preadipocyte factor 1 (Pref-1) by tumor necrosis factor alpha converting enzyme (TACE) and inhibition of adipocyte differentiation. Mol Cell Biol. 2006;26:5421–35.

    Article  CAS  Google Scholar 

  28. Kim YS, Kim E, Park YJ, Kim Y. Retinoic acid receptor beta enhanced the anti-cancer stem cells effect of beta-carotene by down-regulating expression of delta-like 1 homologue in human neuroblastoma cells. Biochem Biophys Res Commun. 2016;480:254–60.

    Article  CAS  Google Scholar 

  29. Zhang SS, Tan JJ, Li L, Chen WT, Han NJ, Guo SP, et al. [Up-regulation of DLK1 in non-small cell lung cancer and the relevant molecular mechanism]. Zhonghua Zhong Liu Za Zhi. 2016;38:510–4.

    CAS  PubMed  Google Scholar 

  30. Benetatos L, Hatzimichael E, Londin E, Vartholomatos G, Loher P, Rigoutsos I, et al. The microRNAs within the DLK1-DIO3 genomic region: involvement in disease pathogenesis. Cell Mol Life Sci. 2013;70:795–814.

    Article  CAS  Google Scholar 

  31. Deng J, Wang L, Chen H, Hao J, Ni J, Chang, et al. Targeting epithelial-mesenchymal transition and cancer stem cells for chemoresistant ovarian cancer. Oncotarget. 2016;7:55771–88.

    PubMed  PubMed Central  Google Scholar 

  32. Haslehurst AM, Koti M, Dharsee M, Nuin P, Evans K, Geraci J, et al. EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC Cancer. 2012;12:91.

    Article  CAS  Google Scholar 

  33. Haga CL, Phinney DG. MicroRNAs in the imprinted DLK1-DIO3 region repress the epithelial-to-mesenchymal transition by targeting the TWIST1 protein signaling network. J Biol Chem. 2012;287:42695–707.

    Article  CAS  Google Scholar 

  34. Kim Y, Lin Q, Zelterman D, Yun Z. Hypoxia-regulated delta-like 1 homologue enhances cancer cell stemness and tumorigenicity. Cancer Res. 2009;69:9271–80.

    Article  CAS  Google Scholar 

  35. Xu J, Wang M, Zhang Z, Zhao W, Wang C, Tu L, et al. Prognostic values of DLK1 for surgery and imatinib mesylate adjuvant therapy in gastrointestinal stromal tumors. Am J Cancer Res. 2016;6:2700–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang CC, Kuo HM, Wu PC, Cheng SH, Chang TT, Chang YC, et al. Soluble delta-like 1 homolog (DLK1) stimulates angiogenesis through Notch1/Akt/eNOS signaling in endothelial cells. Angiogenesis. 2018;21:299–312.

    Article  CAS  Google Scholar 

  37. Baladron V, Ruiz-Hidalgo MJ, Nueda ML, Diaz-Guerra MJ, Garcia-Ramirez JJ, Bonvini E, et al. dlk acts as a negative regulator of Notch1 activation through interactions with specific EGF-like repeats. Exp Cell Res. 2005;303:343–59.

    Article  CAS  Google Scholar 

  38. Rodriguez P, Higueras MA, Gonzalez-Rajal A, Alfranca A, Fierro-Fernandez M, Garcia-Fernandez RA, et al. The non-canonical NOTCH ligand DLK1 exhibits a novel vascular role as a strong inhibitor of angiogenesis. Cardiovasc Res. 2012;93:232–41.

    Article  CAS  Google Scholar 

  39. Gasperowicz M, Otto F. The notch signalling pathway in the development of the mouse placenta. Placenta. 2008;29:651–9.

    Article  CAS  Google Scholar 

  40. Guseh JS, Bores SA, Stanger BZ, Zhou Q, Anderson WJ, Melton DA, et al. Notch signaling promotes airway mucous metaplasia and inhibits alveolar development. Development. 2009;136:1751–9.

    Article  CAS  Google Scholar 

  41. Nueda ML, Naranjo AI, Baladron V, Laborda J. The proteins DLK1 and DLK2 modulate NOTCH1-dependent proliferation and oncogenic potential of human SK-MEL-2 melanoma cells. Biochim Biophys Acta. 2014;1843:2674–84.

    Article  CAS  Google Scholar 

  42. Nueda ML, Naranjo AI, Baladron V, Laborda J. Different expression levels of DLK1 inversely modulate the oncogenic potential of human MDA-MB-231 breast cancer cells through inhibition of NOTCH1 signaling. FASEB J. 2017;31:3484–96.

    Article  CAS  Google Scholar 

  43. Falix FA, Aronson DC, Lamers WH, Gaemers IC. Possible roles of DLK1 in the Notch pathway during development and disease. Biochim Biophys Acta. 2012;1822:988–95.

    Article  CAS  Google Scholar 

  44. Peters JM, Shah YM, Gonzalez FJ. The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention. Nat Rev Cancer. 2012;12:181–95.

    Article  CAS  Google Scholar 

  45. Park JT, Li M, Nakayama K, Mao TL, Davidson B, Zhang Z, et al. Notch3 gene amplification in ovarian cancer. Cancer Res. 2006;66:6312–8.

    Article  CAS  Google Scholar 

  46. Hu W, Liu T, Ivan C, Sun Y, Huang J, Mangala LS, et al. Notch3 pathway alterations in ovarian cancer. Cancer Res. 2014;74:3282–93.

    Article  CAS  Google Scholar 

  47. Jung JG, Stoeck A, Guan B, Wu RC, Zhu H, Blackshaw S, et al. Notch3 interactome analysis identified WWP2 as a negative regulator of Notch3 signaling in ovarian cancer. PLoS Genet. 2014;10:e1004751.

    Article  Google Scholar 

  48. Chen X, Thiaville MM, Chen L, Stoeck A, Xuan J, Gao M, et al. Defining NOTCH3 target genes in ovarian cancer. Cancer Res. 2012;72:2294–303.

    Article  CAS  Google Scholar 

  49. Park JT, Shih IeM, Wang TL. Identification of Pbx1, a potential oncogene, as a Notch3 target gene in ovarian cancer. Cancer Res. 2008;68:8852–60.

    Article  CAS  Google Scholar 

  50. Park JT, Chen X, Trope CG, Davidson B, Shih Ie M, Wang TL. Notch3 overexpression is related to the recurrence of ovarian cancer and confers resistance to carboplatin. Am J Pathol. 2010;177:1087–94.

    Article  CAS  Google Scholar 

  51. Liu GS, Wang JH, Lee JH, Tsai PJ, Tsai HE, Sheu SJ, et al. Gene delivery by subconjunctival injection of adenovirus in rats: a study of local distribution, transgene duration and safety. PLoS ONE. 2015;10:e0143956.

    Article  Google Scholar 

  52. Hu TH, Huang CC, Liu LF, Lin PR, Liu SY, Chang HW, et al. Expression of hepatoma-derived growth factor in hepatocellular carcinoma. Cancer. 2003;98:1444–56.

    Article  CAS  Google Scholar 

  53. Euhus DM, Hudd C, LaRegina MC, Johnson FE. Tumor measurement in the nude mouse. J Surg Oncol. 1986;31:229–34.

    Article  CAS  Google Scholar 

  54. Wu JC, Wang CT, Hung HC, Wu WJ, Wu DC, Chang MC, et al. Heteronemin is a novel c-Met/STAT3 inhibitor against advanced prostate cancer cells. Prostate. 2016;76:1469–83.

    Article  CAS  Google Scholar 

Download references

Author contributions

Conception and design: C.C.H., S.H.C., and M.H.T. Development of methodology: C.C.H., S.H.C., M.L.K., and T.H.U. Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): C.C.H., C.H.W., W.Y.L., and J.S.W. Administrative, technical, or material support: C.C.H., S.H.C., C.H.W., M.L.K., T.H.C., S.T.H., C.T.F., and S.C.H. Writing, review, and/or revision of the manuscript: C.C.H., S.H.C., C.H.W., and M.H.T. Study supervision: C.C.H., and M.H.T.

Funding

This work was supported by grants from the Ministry of Science and Technology, Taiwan (NSC101-2320-B-182-009, NSC102-2320-B-182-011, MOST103-2320-B-182-005-MY3 to C.C.H., and MOST105-2325-B-110-001 to M.H.T.). We thank Chang Gung Medical Foundation Kaohsiung Chang Gung Memorial Hospital Tissue Bank (CLRPG8E0161 and CLRPG8F1701), and the Kaohsiung Armed Forces General Hospital, Taiwan (107-10) for technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao-Cheng Huang or Ming-Hong Tai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, CC., Cheng, SH., Wu, CH. et al. Delta-like 1 homologue promotes tumorigenesis and epithelial-mesenchymal transition of ovarian high-grade serous carcinoma through activation of Notch signaling. Oncogene 38, 3201–3215 (2019). https://doi.org/10.1038/s41388-018-0658-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0658-5

Search

Quick links