Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Sox2 is required for tumor development and cancer cell proliferation in osteosarcoma

Abstract

The stem cell transcription factor Sox2 is highly expressed in many cancers where it is thought to mark cancer stem cells (CSCs). In osteosarcomas, the most common bone malignancy, high Sox2 expression marks and maintains a fraction of tumor-initiating cells that show all the properties of CSC. Knockdown of Sox2 expression abolishes tumorigenicity and suppresses the CSC phenotype. Here we show that, in a mouse model of osteosarcoma, osteoblast-specific Sox2 conditional knockout (CKO) causes a drastic reduction in the frequency and onset of tumors. The rare tumors detected in the Sox2 CKO animals were all Sox2 positive, indicating that they arose from cells that had escaped Sox2 deletion. Furthermore, Sox2 inactivation in cultured osteosarcoma cells by CRISPR/CAS technology leads to a loss of viability and proliferation of the entire cell population. Inactivation of the YAP gene, a major Hippo pathway effector which is a direct Sox2 target, causes similar results and YAP overexpression rescues cells from the lethality caused by Sox2 inactivation. These effects were osteosarcoma-specific, suggesting a mechanism of cell “addiction” to Sox2-initiated pathways. The requirement of Sox2 for osteosarcoma formation as well as for the survival of the tumor cells suggests that disruption of Sox2-initiated pathways could be an effective strategy for the treatment of osteosarcoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arnold K, Sarkar A, Yram MA, Polo JM, Bronson R, Senqupta S, et al. Sox2(+) adult stem and progenitor cells are important for tissue regeneration and survival of mice. Cell Stem Cell. 2011;9:317–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 2003;17:126–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Basu-Roy U, Basilico C, Mansukhani A. Perspectives on cancer stem cells in osteosarcoma. Cancer Lett. 2013;338:158–67.

    Article  PubMed  CAS  Google Scholar 

  4. Driessens G, Blanpain C. Long live sox2: sox2 lasts a lifetime. Cell Stem Cell. 2011;9:283–4.

    Article  PubMed  CAS  Google Scholar 

  5. Niwa H. How is pluripotency determined and maintained? Development. 2007;134:635–46.

    Article  PubMed  CAS  Google Scholar 

  6. Basu-Roy U, Seo E, Ramanathapuram L, Rapp TB, Perry JA, Orkin SH, et al. Sox2 maintains self renewal of tumor-initiating cells in osteosarcomas. Oncogene. 2012;31:2270–82.

    Article  PubMed  CAS  Google Scholar 

  7. Rainusso N, Wang LL, Yustein JT. The adolescent and young adult with cancer: state of the art -- bone tumors. Curr Oncol Rep. 2013;15:296–307.

    Article  PubMed  Google Scholar 

  8. Basu-Roy U, Bayin NS, Rattanakorn K, Han E, Placantonakis DG, Mansukhani A, et al. Sox2 antagonizes the Hippo pathway to maintain stemness in cancer cells. Nat Commun. 2015;6:6411.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Yu FX, Guan KL. The Hippo pathway: regulators and regulations. Genes Dev. 2013;27:355–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Meng Z, Moroishi T, Guan KL. Mechanisms of Hippo pathway regulation. Genes Dev. 2016;30:1–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Moroishi T, Hansen CG, Guan KL. The emerging roles of YAP1 and TAZ in cancer. Nat Rev Cancer. 2015;15:73–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Seo E, Basu-Roy U, Gunaratne PH, Coarfa C, Lim DS, Basilico C, et al. SOX2 regulates YAP1 to maintain stemness and determine cell fate in the osteo-adipo lineage. Cell Rep. 2013;3:2075–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Berman S, Calo E, Landman AS, Danelian PS, Miller ES, West JC, et al. Metastatic osteosarcoma induced by inactivation of Rb and p53 in the osteoblast lineage. Proc Natl Acad Sci USA. 2008;105:11851–6.

    Article  PubMed  Google Scholar 

  14. Walkley CR, Qudsi R, Sankaran VG, Perry JA, Gostissa M, Roth SI, et al. Conditional mouse osteosarcoma, dependent on p53 loss and potentiated by loss of Rb, mimics the human disease. Genes Dev. 2008;22:1662–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Basu-Roy U, Ambrosetti D, Favaro R, Nicolis SK, Mansukhani A, Basilico C. The transcription factor Sox2 is required for osteoblast self-renewal. Cell Death Differ. 2010;17:1345–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Guernet A, Grumolato L. CRISPR/Cas9 editing of the genome for cancer modeling. Methods. 2017;121-122:130–7.

    Article  PubMed  CAS  Google Scholar 

  17. Basilico C, Matsuya Y, Green H. Origin of the thymidine kinase induced by polyoma virus in productively infected cells. J Virol. 1969;3:140–5.

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Liao S, Tammaro M, Yan H. Enriching CRISPR-Cas9 targeted cells by co-targeting the HPRT gene. Nucleic Acids Res. 2015;43:e134.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Lian I, Kim J, Okazawa H, Zhao B, Yu J, Chinnayan A, et al. The role of YAP1 transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev. 2010;24:1106–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Tafani M, Perrone GA, Pucci B, Russo A, Bizzarri M, Mechanick JI, et al. Reprogramming cancer cells in endocrine-related tumors: open issues. Curr Med Chem. 2014;21:1146–51.

    Article  PubMed  CAS  Google Scholar 

  21. Palumbo P, Miconi G, Cinque B, Lombardi F, La Torre C, Dehcordi SR, et al. NOS2 expression in glioma cell lines and glioma primary cell cultures: correlation with neurosphere generation and SOX-2 expression. Oncotarget. 2017;8:25582–98.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Song WS, Yang YP, Huang CS, Lu KH, Liu WH, et al. Sox2, a stemness gene, regulates tumor-initiating and drug-resistant properties in CD133-positive glioblastoma stem cells. J Chin Med Assoc. 2016;79:538–45.

    Article  PubMed  Google Scholar 

  23. Mansouri S, Nejad R, Karabork M, Ekinci C, Solaroglu I, Aldape KD, et al. Sox2: regulation of expression and contribution to brain tumors. CNS Oncol. 2016;5:159–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Santini R, Pietrobono S, Pandolfi S, Montagnani V, D’Amico M, Penachioni JY, et al. SOX2 regulates self-renewal and tumorigenicity of human melanoma-initiating cells. Oncogene. 2014;33:4697–708.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Tan Y, Tajik A, Chen J, Jia Q, Chowdhury F, Wang L, Chen J, et al. Matrix softness regulates plasticity of tumour-repopulating cells via H3K9 demethylation and Sox2 expression. Nat Commun. 2014;5:4619.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Weina K, Wu H, Knappe N, Orouji E, Novak D, Bernhardt M, et al. TGF-β induces SOX2 expression in a time-dependent manner in human melanoma cells. Pigment Cell Melanoma Res. 2016;29:453–8.

    Article  PubMed  CAS  Google Scholar 

  27. Ferone G, Song JY, Sutherland KD, Bhaskaran R, Monkhorst K, Lambooij JP, et al. SOX2 is the determining oncogenic switch in promoting lung squamous cell carcinoma from different cells of origin. Cancer Cell. 2016;30:519–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Siegle JM, Basin A, Sastre-Perona A, Yonekubo Y, Brown J, Sennett R, et al. SOX2 is a cancer-specific regulator of tumour initiating potential in cutaneous squamous cell carcinoma. Nat Commun. 2014;5:4511.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Boumahdi S, Driessens G, Lapouge G, Rorive S, Nassar D, Lemercier M, et al. Sox2 controls tumor initiation and cancer stem-cell functions in squamous cell carcinoma. Nature. 2014;511:246–50.

    Article  PubMed  CAS  Google Scholar 

  30. Shahriyari L, Komarova NL. Symmetric vs. asymmetric stem cell divisions: an adaptation against cancer? PLoS ONE. 2013;8:e76195.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Brinkman EK, Chen T, Amendola M, van Steensel B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 2014;42:e168.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This investigation was supported by NYSTEM contract CO29560 and NIH/ NCI-R21CA186031. We thank Dr. Stuart Orkin for providing us with the Tp53, Rb mutant mice; Matthew Murtha for his contribution to some of the initial experiments; and Upal BasuRoy for helpful discussions. We also wish to acknowledge the Histopathology core services at NYU Langone Medical Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alka Mansukhani or Claudio Basilico.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurizi, G., Verma, N., Gadi, A. et al. Sox2 is required for tumor development and cancer cell proliferation in osteosarcoma. Oncogene 37, 4626–4632 (2018). https://doi.org/10.1038/s41388-018-0292-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0292-2

This article is cited by

Search

Quick links