Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mutant KRAS promotes liver metastasis of colorectal cancer, in part, by upregulating the MEK-Sp1-DNMT1-miR-137-YB-1-IGF-IR signaling pathway

Abstract

Although the role of insulin-like growth factor-I receptor (IGF-IR) in promoting colorectal liver metastasis is known, the mechanism by which IGF-IR is upregulated in colorectal cancer (CRC) is not defined. In this study, we obtained evidence that mutant KRAS transcriptionally activates IGF-IR gene expression through Y-box-binding protein (YB)-1 upregulation via a novel MEK-Sp1-DNMT1-miR-137 pathway in CRC cells. The mechanistic link between the tumor suppressive miR-137 and the translational regulation of YB-1 is intriguing because epigenetic silencing of miR-137 represents an early event in colorectal carcinogenesis due to promoter hypermethylation. This proposed signaling axis was further verified by the immunohistochemical evaluations of liver metastases from a cohort of 46 KRAS mutant CRC patients, which showed a significant correlation in the expression levels among Sp1, miR-137, YB-1, and IGF-1R. Moreover, suppression of the expression of YB-1 and IGF-IR via genetic knockdown or the pharmacological inhibition of MEK hampers KRAS-driven colorectal liver metastasis in our animal model studies. From a translational perspective, the identification of this KRAS-driven pathway might provide a mechanistic rationale for the use of a MEK inhibitor as an adjuvant, in combination with standard of care, to prevent the recurrence of colorectal liver metastasis in KRAS mutant CRC patients after receiving liver resection, which warrants further investigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin. 2016;66:7–30.

    Article  Google Scholar 

  2. Leporrier J, Maurel J, Chiche L, Bara S, Segol P, Launoy G. A population-based study of the incidence, management and prognosis of hepatic metastases from colorectal cancer. Br J Surg. 2006;93:465–74.

    Article  CAS  PubMed  Google Scholar 

  3. Manfredi S, Lepage C, Hatem C, Coatmeur O, Faivre J, Bouvier AM. Epidemiology and management of liver metastases from colorectal cancer. Ann Surg. 2006;244:254–9.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Brand TM, Wheeler DL. KRAS mutant colorectal tumors: past and present. Small GTPases. 2012;3:34–9.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Adam R, Wicherts DA, de Haas RJ, Ciacio O, Levi F, Paule B, et al. Patients with initially unresectable colorectal liver metastases: is there a possibility of cure? J Clin Oncol. 2009;27:1829–35.

    Article  PubMed  Google Scholar 

  6. de Jong MC, Pulitano C, Ribero D, Strub J, Mentha G, Schulick RD, et al. Rates and patterns of recurrence following curative intent surgery for colorectal liver metastasis: an international multi-institutional analysis of 1669 patients. Ann Surg. 2009;250:440–8.

    PubMed  Google Scholar 

  7. Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, et al. Genetic alterations during colorectal-tumor development. N Engl J Med. 1988;319:525–32.

    Article  CAS  PubMed  Google Scholar 

  8. Conlin A, Smith G, Carey FA, Wolf CR, Steele RJ. The prognostic significance of K-ras, p53, and APC mutations in colorectal carcinoma. Gut. 2005;54:1283–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lievre A, Bachet JB, Le Corre D, Boige V, Landi B, Emile JF, et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 2006;66:3992–5.

    Article  CAS  PubMed  Google Scholar 

  10. Van Cutsem E, Kohne CH, Hitre E, Zaluski J, Chang Chien CR, Makhson A, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 2009;360:1408–17.

    Article  PubMed  Google Scholar 

  11. Li Z, Chen Y, Wang D, Wang G, He L, Suo J. Detection of KRAS mutations and their associations with clinicopathological features and survival in Chinese colorectal cancer patients. J Int Med Res. 2012;40:1589–98.

    Article  CAS  PubMed  Google Scholar 

  12. Nash GM, Gimbel M, Shia J, Nathanson DR, Ndubuisi MI, Zeng ZS, et al. KRAS mutation correlates with accelerated metastatic progression in patients with colorectal liver metastases. Ann Surg Oncol. 2010;17:572–8.

    Article  PubMed  Google Scholar 

  13. Wu Y, Yamada S, Izumi H, Li Z, Shimajiri S, Wang KY, et al. Strong YB-1 expression is associated with liver metastasis progression and predicts shorter disease-free survival in advanced gastric cancer. J Surg Oncol. 2012;105:724–30.

    Article  CAS  PubMed  Google Scholar 

  14. Yan X, Yan L, Zhou J, Liu S, Shan Z, Jiang C, et al. High expression of Y-box-binding protein 1 is associated with local recurrence and predicts poor outcome in patients with colorectal cancer. Int J Clin Exp Pathol. 2014;7:8715–23.

    PubMed  PubMed Central  Google Scholar 

  15. Sachdev D, Yee D. Disrupting insulin-like growth factor signaling as a potential cancer therapy. Mol Cancer Ther. 2007;6:1–12.

    Article  CAS  PubMed  Google Scholar 

  16. Samani AA, Yakar S, LeRoith D, Brodt P. The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocr Rev. 2007;28:20–47.

    Article  CAS  PubMed  Google Scholar 

  17. Ewing GP, Goff LW. The insulin-like growth factor signaling pathway as a target for treatment of colorectal carcinoma. Clin Colorectal Cancer. 2010;9:219–23.

    Article  PubMed  Google Scholar 

  18. Vigneri PG, Tirro E, Pennisi MS, Massimino M, Stella S, Romano C, et al. The insulin/IGF system in colorectal cancer development and resistance to therapy. Front Oncol. 2015;5:230.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lasham A, Print CG, Woolley AG, Dunn SE, Braithwaite AW. YB-1: oncoprotein, prognostic marker and therapeutic target? Biochem J. 2013;449:11–23.

    Article  CAS  Google Scholar 

  20. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119:1420–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Busch EL, McGraw KA, Sandler RS. The potential for markers of epithelial-mesenchymal transition to improve colorectal cancer outcomes: a systematic review. Cancer Epidemiol Biomark Prev. 2014;23:1164–75.

    Article  CAS  Google Scholar 

  22. Cao H, Xu E, Liu H, Wan L, Lai M. Epithelial-mesenchymal transition in colorectal cancer metastasis: a system review. Pathol Res Pract. 2015;211:557–69.

    Article  CAS  PubMed  Google Scholar 

  23. Shibao K, Takano H, Nakayama Y, Okazaki K, Nagata N, Izumi H, et al. Enhanced coexpression of YB-1 and DNA topoisomerase II alpha genes in human colorectal carcinomas. Int J Cancer. 1999;83:732–7.

    Article  CAS  PubMed  Google Scholar 

  24. Ardito F, Arena V, Vellone M, Grande G, Pennacchia I, Majellaro F, et al. Strong YB-1 expression predicts liver recurrence following resection for colorectal metastases. J Gastrointest Surg. 2014;18:1987–93.

    Article  PubMed  Google Scholar 

  25. Okamoto K, Ishiguro T, Midorikawa Y, Ohata H, Izumiya M, Tsuchiya N, et al. miR-493 induction during carcinogenesis blocks metastatic settlement of colon cancer cells in liver. EMBO J. 2012;31:1752–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Smakman N, van den Wollenberg DJ, Elias SG, Sasazuki T, Shirasawa S, Hoeben RC, et al. KRAS(D13) promotes apoptosis of human colorectal tumor cells by ReovirusT3D and oxaliplatin but not by tumor necrosis factor-related apoptosis-inducing ligand. Cancer Res. 2006;66:5403–8.

    Article  CAS  PubMed  Google Scholar 

  27. Hahn S, Jackstadt R, Siemens H, Hunten S, Hermeking H. SNAIL and miR-34a feed-forward regulation of ZNF281/ZBP99 promotes epithelial-mesenchymal transition. EMBO J. 2013;32:3079–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ebi H, Corcoran RB, Singh A, Chen Z, Song Y, Lifshits E, et al. Receptor tyrosine kinases exert dominant control over PI3K signaling in human KRAS mutant colorectal cancers. J Clin Invest. 2011;121:4311–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mouneimne G, Brugge JS. YB-1 translational control of epithelial-mesenchyme transition. Cancer Cell. 2009;15:357–9.

    Article  CAS  PubMed  Google Scholar 

  30. Zhao Y, Adjei AA. The clinical development of MEK inhibitors. Nat Rev Clin Oncol. 2014;11:385–400.

    Article  CAS  PubMed  Google Scholar 

  31. Chibi M, Meyer M, Skepu A, GR DJ, Moolman-Smook JC, Pugh DJ. RBBP6 interacts with multifunctional protein YB-1 through its RING finger domain, leading to ubiquitination and proteosomal degradation of YB-1. J Mol Biol. 2008;384:908–16.

    Article  CAS  PubMed  Google Scholar 

  32. Lutz M, Wempe F, Bahr I, Zopf D, von Melchner H. Proteasomal degradation of the multifunctional regulator YB-1 is mediated by an F-Box protein induced during programmed cell death. FEBS Lett. 2006;580:3921–30.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang X, Ai F, Li X, Tian L, Wang X, Shen S, et al. MicroRNA-34a suppresses colorectal cancer metastasis by regulating Notch signaling. Oncol Lett. 2017;14:2325–33.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Li C, Wang Y, Lu S, Zhang Z, Meng H, Liang L, et al. miR-34a inhibits colon cancer proliferation and metastasis by inhibiting platelet-derived growth factor receptor alpha. Mol Med Rep. 2015;12:7072–8.

    Article  CAS  PubMed  Google Scholar 

  35. Lai M, Du G, Shi R, Yao J, Yang G, Wei Y, et al. miR-34a inhibits migration and invasion by regulating the SIRT1/p53 pathway in human SW480 cells. Mol Med Rep. 2015;11:3301–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang H, Wu J, Meng X, Ying X, Zuo Y, Liu R, et al. MicroRNA-342 inhibits colorectal cancer cell proliferation and invasion by directly targeting DNA methyltransferase 1. Carcinogenesis. 2011;32:1033–42.

    Article  CAS  PubMed  Google Scholar 

  37. Yang H, Li Q, Niu J, Li B, Jiang D, Wan Z, et al. MicroRNA-342-5p and miR-608 inhibit colon cancer tumorigenesis by targeting NAA10. Oncotarget. 2016;7:2709–20.

    PubMed  Google Scholar 

  38. Weng W, Okugawa Y, Toden S, Toiyama Y, Kusunoki M, Goel A. FOXM1 and FOXQ1 are promising prognostic biomarkers and novel targets of tumor-suppressive miR-342 in human colorectal cancer. Clin Cancer Res. 2016;22:4947–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Luo C, Tetteh PW, Merz PR, Dickes E, Abukiwan A, Hotz-Wagenblatt A, et al. miR-137 inhibits the invasion of melanoma cells through downregulation of multiple oncogenic target genes. J Invest Dermatol. 2013;133:768–75.

    Article  CAS  PubMed  Google Scholar 

  40. Zhu X, Li Y, Shen H, Li H, Long L, Hui L, et al. miR-137 restoration sensitizes multidrug-resistant MCF-7/ADM cells to anticancer agents by targeting YB-1. Acta Biochim Biophys Sin. 2013;45:80–6.

    Article  CAS  PubMed  Google Scholar 

  41. Smith AR, Marquez RT, Tsao WC, Pathak S, Roy A, Ping J, et al. Tumor suppressive microRNA-137 negatively regulates Musashi-1 and colorectal cancer progression. Oncotarget. 2015;6:12558–73.

    PubMed  PubMed Central  Google Scholar 

  42. Mahmoudi E, Cairns MJ. miR-137: an important player in neural development and neoplastic transformation. Mol Psychiatry. 2017;22:44–55.

    Article  CAS  PubMed  Google Scholar 

  43. Neault M, Mallette FA, Richard S. miR-137 modulates a tumor suppressor network-inducing senescence in pancreatic cancer cells. Cell Rep. 2016;14:1966–78.

    Article  CAS  PubMed  Google Scholar 

  44. Balaguer F, Link A, Lozano JJ, Cuatrecasas M, Nagasaka T, Boland CR, et al. Epigenetic silencing of miR-137 is an early event in colorectal carcinogenesis. Cancer Res. 2010;70:6609–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhu YM, Huang Q, Lin J, Hu Y, Chen J, Lai MD. Expression of human DNA methyltransferase 1 in colorectal cancer tissues and their corresponding distant normal tissues. Int J Colorectal Dis. 2007;22:661–6.

    Article  PubMed  Google Scholar 

  46. Kishikawa S, Murata T, Kimura H, Shiota K, Yokoyama KK. Regulation of transcription of the Dnmt1 gene by Sp1 and Sp3 zinc finger proteins. Eur J Biochem. 2002;269:2961–70.

    Article  CAS  PubMed  Google Scholar 

  47. Werner H, Karnieli E, Rauscher FJ, LeRoith D. Wild-type and mutant p53 differentially regulate transcription of the insulin-like growth factor I receptor gene. Proc Natl Acad Sci USA. 1996;93:8318–23.

    Article  CAS  PubMed  Google Scholar 

  48. Werner H, Maor S. The insulin-like growth factor-I receptor gene: a downstream target for oncogene and tumor suppressor action. Trends Endocrinol Metab. 2006;17:236–42.

    Article  CAS  PubMed  Google Scholar 

  49. Nahor I, Abramovitch S, Engeland K, Werner H. The p53-family members p63 and p73 inhibit insulin-like growth factor-I receptor gene expression in colon cancer cells. Growth Horm IGF Res. 2005;15:388–96.

    Article  CAS  PubMed  Google Scholar 

  50. Ahmed D, Eide PW, Eilertsen IA, Danielsen SA, Eknaes M, Hektoen M, et al. Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis. 2013;2:e71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shaheen S, Ahmed M, Lorenzi F, Nateri AS. Spheroid-formation (Colonosphere) assay for in vitro assessment and expansion of stem cells in colon cancer. Stem Cell Rev. 2016;12:492–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ishizu K, Sunose N, Yamazaki K, Tsuruo T, Sadahiro S, Makuuchi H, et al. Development and characterization of a model of liver metastasis using human colon cancer HCT-116 cells. Biol Pharm Bull. 2007;30:1779–83.

    Article  CAS  PubMed  Google Scholar 

  53. Ding C, Luo J, Li L, Li S, Yang L, Pan H, et al. Gab2 facilitates epithelial-to-mesenchymal transition via the MEK/ERK/MMP signaling in colorectal cancer. J Exp Clin Cancer Res. 2016;35:5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cui F, Wang S, Lao I, Zhou C, Kong H, Bayaxi N, et al. miR-375 inhibits the invasion and metastasis of colorectal cancer via targeting SP1 and regulating EMT-associated genes. Oncol Rep. 2016;36:487–93.

    Article  CAS  PubMed  Google Scholar 

  55. Chen DL, Wang DS, Wu WJ, Zeng ZL, Luo HY, Qiu MZ, et al. Overexpression of paxillin induced by miR-137 suppression promotes tumor progression and metastasis in colorectal cancer. Carcinogenesis. 2013;34:803–11.

    Article  CAS  PubMed  Google Scholar 

  56. Huang CC, Wu DW, Lin PL, Lee H. Paxillin promotes colorectal tumor invasion and poor patient outcomes via ERK-mediated stabilization of Bcl-2 protein by phosphorylation at Serine 87. Oncotarget. 2015;6:8698–708.

    PubMed  PubMed Central  Google Scholar 

  57. Leonard GD, Brenner B, Kemeny NE. Neoadjuvant chemotherapy before liver resection for patients with unresectable liver metastases from colorectal carcinoma. J Clin Oncol. 2005;23:2038–48.

    Article  CAS  PubMed  Google Scholar 

  58. Rees M, Tekkis PP, Welsh FK, O’Rourke T, John TG. Evaluation of long-term survival after hepatic resection for metastatic colorectal cancer: a multifactorial model of 929 patients. Ann Surg. 2008;247:125–35.

    Article  PubMed  Google Scholar 

  59. Brudvik KW, Kopetz SE, Li L, Conrad C, Aloia TA, Vauthey JN. Meta-analysis of KRAS mutations and survival after resection of colorectal liver metastases. Br J Surg. 2015;102:1175–83.

    Article  CAS  PubMed  Google Scholar 

  60. Passiglia F, Bronte G, Bazan V, Galvano A, Vincenzi B, Russo A. Can KRAS and BRAF mutations limit the benefit of liver resection in metastatic colorectal cancer patients? A systematic review and meta-analysis. Crit Rev Oncol Hematol. 2016;99:150–7.

    Article  PubMed  Google Scholar 

  61. Bennouna J, Lang I, Valladares-Ayerbes M, Boer K, Adenis A, Escudero P, et al. A phase II, open-label, randomised study to assess the efficacy and safety of the MEK1/2 inhibitor AZD6244 (ARRY-142886) vs. capecitabine monotherapy in patients with colorectal cancer who have failed one or two prior chemotherapeutic regimens. Invest New Drugs. 2011;29:1021–8.

    Article  CAS  PubMed  Google Scholar 

  62. Lee MS, Kopetz S. Novel therapies in development for metastatic colorectal cancer. Gastrointest Cancer Res. 2014;7:S2–7.

    PubMed  PubMed Central  Google Scholar 

  63. Kashif M, Andersson C, Hassan S, Karlsson H, Senkowski W, Fryknas M, et al. In vitro discovery of promising anti-cancer drug combinations using iterative maximisation of a therapeutic index. Sci Rep. 2015;5:14118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chattopadhyay N, Berger AJ, Koenig E, Bannerman B, Garnsey J, Bernard H, et al. KRAS genotype correlates with proteasome inhibitor ixazomib activity in preclinical in vivo models of colon and non-small cell lung cancer: potential role of tumor metabolism. PLoS ONE. 2015;10:e0144825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chu PC, Yang MC, Kulp SK, Salunke SB, Himmel LE, Fang CS, et al. Regulation of oncogenic KRAS signaling via a novel KRAS-integrin-linked kinase-hnRNPA1 regulatory loop in human pancreatic cancer cells. Oncogene. 2016;35:3897–908.

    Article  CAS  PubMed  Google Scholar 

  66. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–8.

    Article  CAS  Google Scholar 

  67. Wu YY, Chen YL, Jao YC, Hsieh IS, Chang KC, Hong TM. miR-320 regulates tumor angiogenesis driven by vascular endothelial cells in oral cancer by silencing neuropilin 1. Angiogenesis. 2014;17:247–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology grant MOST 105-2320-B-001-004 (P-CC), American Cancer Society Seed grant (CW), Paul Calabresi Scholar K12 Training grant (CW), intramural funding from Academia Sinica (C-SC), Bi-Institutional Collaborative Pancreatic Cancer Research grants from National Cheng Kung University College of Medicine (C-SC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Shih Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

These authors contributed equally: Po-Chen Chu, Peng-Chan Lin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, PC., Lin, PC., Wu, HY. et al. Mutant KRAS promotes liver metastasis of colorectal cancer, in part, by upregulating the MEK-Sp1-DNMT1-miR-137-YB-1-IGF-IR signaling pathway. Oncogene 37, 3440–3455 (2018). https://doi.org/10.1038/s41388-018-0222-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0222-3

Search

Quick links