Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TBX3 promotes proliferation of papillary thyroid carcinoma cells through facilitating PRC2-mediated p57KIP2 repression

Abstract

The T-box transcription factor TBX3 has been implicated in the patterning and differentiation of a number of tissues during embryonic development, and is overexpressed in a variety of cancers; however, the precise function of TBX3 in papillary thyroid carcinoma (PTC) development remains to be determined. In the current study, we report downregulation of TBX3 in PTC cells delays the G1/S-phase transition, decreases cell growth in vitro, and inhibits tumor formation in vivo. We identified p57KIP2 as a novel downstream target that serves as the key mediator of TBX3’s control over PTC cell proliferation. Reduced expression of TBX3 resulted in increased p57KIP2 level, while knockdown of p57KIP2 rescues the cell-cycle arrest phenotype. In clinical PTC specimens, the expression of TBX3 is markedly upregulated and significantly correlated with advanced tumor grade, but negatively correlated with the expression of p57KIP2. Mechanism investigation revealed that TBX3 directly binds to the CDKN1C gene promoter region, the coding gene of p57KIP2, and represses its transcription. Furthermore, recruitment of main components of the PRC2 complex as well as class I histone deacetylases, HDAC1 and HDAC2, is required for TBX3 to fulfill the transcriptional repression function. Our findings illustrate the previously unknown function and mechanism in cell proliferation regulation by the TBX3-p57KIP2 axis and provide evidence for the contribution of the PRC2 complex and HDAC1/2. Targeting of this pathway may present a novel and molecular defined strategy against PTC development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bamshad M, Lin RC, Law DJ, Watkins WC, Krakowiak PA, Moore ME, et al. Mutations in human TBX3 alter limb, apocrine and genital development in ulnar-mammary syndrome. Nat Genet. 1997;16:311–5.

    Article  CAS  PubMed  Google Scholar 

  2. Douglas NC, Papaioannou VE. The T-box transcription factors TBX2 and TBX3 in mammary gland development and breast cancer. J Mammary Gland Biol Neoplasia. 2013;18:143–7.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Trowe MO, Zhao L, Weiss AC, Christoffels V, Epstein DJ, Kispert A. Inhibition of Sox2-dependent activation of Shh in the ventral diencephalon by Tbx3 is required for formation of the neurohypophysis. Development. 2013;140:2299–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fan W, Huang X, Chen C, Gray J, Huang T. TBX3 and its isoform TBX3+2a are functionally distinctive in inhibition of senescence and are overexpressed in a subset of breast cancer cell lines. Cancer Res. 2004;64:5132–9.

    Article  CAS  PubMed  Google Scholar 

  5. Lomnytska M, Dubrovska A, Hellman U, Volodko N, Souchelnytskyi S. Increased expression of cSHMT, Tbx3 and utrophin in plasma of ovarian and breast cancer patients. Int J Cancer. 2006;118:412–21.

    Article  CAS  PubMed  Google Scholar 

  6. Lyng H, Brovig RS, Svendsrud DH, Holm R, Kaalhus O, Knutstad K, et al. Gene expressions and copy numbers associated with metastatic phenotypes of uterine cervical cancer. BMC Genom. 2006;7:268.

    Article  CAS  Google Scholar 

  7. Perkhofer L, Walter K, Costa IG, Carrasco MC, Eiseler T, Hafner S, et al. Tbx3 fosters pancreatic cancer growth by increased angiogenesis and activin/nodal-dependent induction of stemness. Stem Cell Res. 2016;17:367–78.

    Article  CAS  PubMed  Google Scholar 

  8. Rodriguez M, Aladowicz E, Lanfrancone L, Goding CR. Tbx3 represses E-cadherin expression and enhances melanoma invasiveness. Cancer Res. 2008;68:7872–81.

    Article  CAS  PubMed  Google Scholar 

  9. Wansleben S, Peres J, Hare S, Goding CR, Prince S. T-box transcription factors in cancer biology. Biochim Biophys Acta. 2014;1846:380–91.

    CAS  PubMed  Google Scholar 

  10. Willmer T, Peres J, Mowla S, Abrahams A, Prince S. The T-Box factor TBX3 is important in S-phase and is regulated by c-Myc and cyclin A-CDK2. Cell Cycle. 2015;14:3173–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li J, Weinberg MS, Zerbini L, Prince S. The oncogenic TBX3 is a downstream target and mediator of the TGF-beta1 signaling pathway. Mol Biol Cell. 2013;24:3569–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lingbeek ME, Jacobs JJ, van Lohuizen M. The T-box repressors TBX2 and TBX3 specifically regulate the tumor suppressor gene p14ARF via a variant T-site in the initiator. J Biol Chem. 2002;277:26120–7.

    Article  CAS  PubMed  Google Scholar 

  13. Yarosh W, Barrientos T, Esmailpour T, Lin L, Carpenter PM, Osann K, et al. TBX3 is overexpressed in breast cancer and represses p14 ARF by interacting with histone deacetylases. Cancer Res. 2008;68:693–9.

    Article  CAS  PubMed  Google Scholar 

  14. Platonova N, Scotti M, Babich P, Bertoli G, Mento E, Meneghini V, et al. TBX3, the gene mutated in ulnar-mammary syndrome, promotes growth of mammary epithelial cells via repression of p19ARF, independently of p53. Cell Tissue Res. 2007;328:301–16.

    Article  CAS  PubMed  Google Scholar 

  15. Willmer T, Hare S, Peres J, Prince S. The T-box transcription factor TBX3 drives proliferation by direct repression of thep21(WAF1) cyclin-dependent kinase inhibitor. Cell Div. 2016;11:6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Burgucu D, Guney K, Sahinturk D, Ozbudak IH, Ozel D, Ozbilim G, et al. Tbx3 represses PTEN and is over-expressed in head and neck squamous cell carcinoma. BMC Cancer. 2012;12:481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Boyd SC, Mijatov B, Pupo GM, Tran SL, Gowrishankar K, Shaw HM, et al. Oncogenic B-RAF(V600E) signaling induces the T-Box3 transcriptional repressor to repress E-cadherin and enhance melanoma cell invasion. J Invest Dermatol. 2013;133:1269–77.

    Article  CAS  PubMed  Google Scholar 

  18. Shan ZZ, Yan XB, Yan LL, Tian Y, Meng QC, Qiu WW, et al. Overexpression of Tbx3 is correlated with epithelial-mesenchymal transition phenotype and predicts poor prognosis of colorectal cancer. Am J Cancer Res. 2015;5:344–53.

    CAS  PubMed  Google Scholar 

  19. Renard CA, Labalette C, Armengol C, Cougot D, Wei Y, Cairo S, et al. Tbx3 is a downstream target of the Wnt/beta-catenin pathway and a critical mediator of beta-catenin survival functions in liver cancer. Cancer Res. 2007;67:901–10.

    Article  CAS  PubMed  Google Scholar 

  20. Fillmore CM, Gupta PB, Rudnick JA, Caballero S, Keller PJ, Lander ES, et al. Estrogen expands breast cancer stem-like cells through paracrine FGF/Tbx3 signaling. Proc Natl Acad Sci USA. 2010;107:21737–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lloyd RV, Buehler D, Khanafshar E. Papillary thyroid carcinoma variants. Head Neck Pathol. 2011;5:51–6.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sato N, Matsubayashi H, Abe T, Fukushima N, Goggins M. Epigenetic down-regulation of CDKN1C/p57KIP2 in pancreatic ductal neoplasms identified by gene expression profiling. Clin Cancer Res. 2005;11:4681–8.

    Article  CAS  PubMed  Google Scholar 

  23. Yang X, Karuturi RK, Sun F, Aau M, Yu K, Shao R, et al. CDKN1C (p57) is a direct target of EZH2 and suppressed by multiple epigenetic mechanisms in breast cancer cells. PLoS ONE. 2009;4:e5011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Sun CC, Li SJ, Li G, Hua RX, Zhou XH, Li DJ. Long intergenic noncoding RNA 00511 acts as an oncogene in non-small-cell lung cancer by binding to EZH2 and suppressing p57. Mol Ther Nucleic Acids. 2016;5:e385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yan Y, Frisen J, Lee MH, Massague J, Barbacid M. Ablation of the CDK inhibitor p57Kip2 results in increased apoptosis and delayed differentiation during mouse development. Genes Dev. 1997;11:973–83.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang P, Liegeois NJ, Wong C, Finegold M, Hou H, Thompson JC, et al. Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith-Wiedemann syndrome. Nature. 1997;387:151–8.

    Article  CAS  PubMed  Google Scholar 

  27. Ito Y, Yoshida H, Nakano K, Kobayashi K, Yokozawa T, Hirai K, et al. Expression of p57/Kip2 protein in normal and neoplastic thyroid tissues. Int J Mol Med. 2002;9:373–6.

    CAS  PubMed  Google Scholar 

  28. Ito Y, Yoshida H, Matsuzuka F, Matsuura N, Nakamura Y, Nakamine H, et al. Expression of the components of the Cip/Kip family in malignant lymphoma of the thyroid. Pathobiology. 2004;71:164–70.

    Article  CAS  PubMed  Google Scholar 

  29. Melck A, Masoudi H, Griffith OL, Rajput A, Wilkins G, Bugis S, et al. Cell cycle regulators show diagnostic and prognostic utility for differentiated thyroid cancer. Ann Surg Oncol. 2007;14:3403–11.

    Article  PubMed  Google Scholar 

  30. Higashimoto K, Soejima H, Saito T, Okumura K, Mukai T. Imprinting disruption of the CDKN1C/KCNQ1OT1 domain: the molecular mechanisms causing Beckwith-Wiedemann syndrome and cancer. Cytogenet Genome Res. 2006;113:306–12.

    Article  CAS  PubMed  Google Scholar 

  31. Kikuchi T, Toyota M, Itoh F, Suzuki H, Obata T, Yamamoto H, et al. Inactivation of p57KIP2 by regional promoter hypermethylation and histone deacetylation in human tumors. Oncogene. 2002;21:2741–9.

    Article  CAS  PubMed  Google Scholar 

  32. Kobatake T, Yano M, Toyooka S, Tsukuda K, Dote H, Kikuchi T, et al. Aberrant methylation of p57KIP2 gene in lung and breast cancers and malignant mesotheliomas. Oncol Rep. 2004;12:1087–92.

    CAS  PubMed  Google Scholar 

  33. Lai S, Goepfert H, Gillenwater AM, Luna MA, El-Naggar AK. Loss of imprinting and genetic alterations of the cyclin-dependent kinase inhibitor p57KIP2 gene in head and neck squamous cell carcinoma. Clin Cancer Res. 2000;6:3172–6.

    CAS  PubMed  Google Scholar 

  34. Borriello A, Caldarelli I, Bencivenga D, Criscuolo M, Cucciolla V, Tramontano A, et al. p57(Kip2) and cancer: time for a critical appraisal. Mol Cancer Res. 2011;9:1269–84.

    Article  CAS  PubMed  Google Scholar 

  35. Dauphinot L, De Oliveira C, Melot T, Sevenet N, Thomas V, Weissman BE, et al. Analysis of the expression of cell cycle regulators in Ewing cell lines: EWS-FLI-1 modulates p57KIP2and c-Myc expression. Oncogene. 2001;20:3258–65.

    Article  CAS  PubMed  Google Scholar 

  36. Mesbah K, Rana MS, Francou A, van Duijvenboden K, Papaioannou VE, Moorman AF, et al. Identification of a Tbx1/Tbx2/Tbx3 genetic pathway governing pharyngeal and arterial pole morphogenesis. Hum Mol Genet. 2012;21:1217–29.

    Article  CAS  PubMed  Google Scholar 

  37. Fagman H, Amendola E, Parrillo L, Zoppoli P, Marotta P, Scarfo M, et al. Gene expression profiling at early organogenesis reveals both common and diverse mechanisms in foregut patterning. Dev Biol. 2011;359:163–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhao L, Zevallos SE, Rizzoti K, Jeong Y, Lovell-Badge R, Epstein DJ. Disruption of SoxB1-dependent Sonic hedgehog expression in the hypothalamus causes septo-optic dysplasia. Dev Cell. 2012;22:585–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research work was supported by the grants from the National Natural Science Foundation of China (31371329 to L.Z., 81702710 to S.Y., 81472580 to M.G.). Innovation Team Development Plan of the Ministry of Education (IRT13085), The Tianjin Municipal Science and Technology Commission (13JCYBJC37200 to L,Z., 17JCQNJC11200 to S.Y.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Yang or Li Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Ruan, X., Zhang, P. et al. TBX3 promotes proliferation of papillary thyroid carcinoma cells through facilitating PRC2-mediated p57KIP2 repression. Oncogene 37, 2773–2792 (2018). https://doi.org/10.1038/s41388-017-0090-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-017-0090-2

This article is cited by

Search

Quick links