Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Distinct roles of excitatory and inhibitory neurons in the medial prefrontal cortex in the expression and reconsolidation of methamphetamine-associated memory in male mice

Subjects

Abstract

Methamphetamine, a commonly abused drug, is known for its high relapse rate. The persistence of addictive memories associated with methamphetamine poses a significant challenge in preventing relapse. Memory retrieval and subsequent reconsolidation provide an opportunity to disrupt addictive memories. However, the key node in the brain network involved in methamphetamine-associated memory retrieval has not been clearly defined. In this study, using the conditioned place preference in male mice, whole brain c-FOS mapping and functional connectivity analysis, together with chemogenetic manipulations of neural circuits, we identified the medial prefrontal cortex (mPFC) as a critical hub that integrates inputs from the retrosplenial cortex and the ventral tegmental area to support both the expression and reconsolidation of methamphetamine-associated memory during its retrieval. Surprisingly, with further cell-type specific analysis and manipulation, we also observed that methamphetamine-associated memory retrieval activated inhibitory neurons in the mPFC to facilitate memory reconsolidation, while suppressing excitatory neurons to aid memory expression. These findings provide novel insights into the neural circuits and cellular mechanisms involved in the retrieval process of addictive memories. They suggest that targeting the balance between excitation and inhibition in the mPFC during memory retrieval could be a promising treatment strategy to prevent relapse in methamphetamine addiction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characteristics of changes in the activity of brain regions and their functional network during the retrieval of methamphetamine (METH)-associated conditioned place preference (CPP) memory.
Fig. 2: Inhibition of the medial prefrontal cortex (mPFC) suppressed both recent and remote METH-associated CPP memory expression and reconsolidation.
Fig. 3: Differential roles of mPFC projecting neurons in the retrosplenial cortex (RSC) and ventral tegmental area (VTA) during METH-associated CPP memory retrieval.
Fig. 4: mPFC excitatory and inhibitory neurons differentially regulate METH-associated CPP memory expression and reconsolidation.
Fig. 5: METH-associated CPP memory retrieval induces transcriptional changes in the mPFC.

Similar content being viewed by others

Data availability

The RNA sequencing data generated for this study can be found in the GEO repository under accession number GSE249153. Further information of this study is available upon reasonable request from the corresponding authors, Hu Zhao (zhaohu3@mail.sysu.edu.cn) and Xiaojing Ye (yexiaoj8@mail.sysu.edu.cn).

References

  1. Chomchai C, Chomchai S. Global patterns of methamphetamine use. Curr Opin Psychiatry. 2015;28:269–74.

    Article  PubMed  Google Scholar 

  2. Sinha R. New findings on biological factors predicting addiction relapse vulnerability. Curr Psychiatry Rep. 2011;13:398–405.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Alberini CM. The role of reconsolidation and the dynamic process of long-term memory formation and storage. Front Behav Neurosci. 2011;5:12.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nader K, Schafe GE, Le Doux JE. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature. 2000;406:722–6.

    Article  CAS  PubMed  Google Scholar 

  5. Mamiya N, Fukushima H, Suzuki A, Matsuyama Z, Homma S, Frankland PW, et al. Brain region-specific gene expression activation required for reconsolidation and extinction of contextual fear memory. J Neurosci. 2009;29:402–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wise RA. Dopamine, learning and motivation. Nat Rev Neurosci. 2004;5:483–94.

    Article  CAS  PubMed  Google Scholar 

  7. Padgett CL, Lalive AL, Tan KR, Terunuma M, Munoz MB, Pangalos MN, et al. Methamphetamine-evoked depression of GABA(B) receptor signaling in GABA neurons of the VTA. Neuron. 2012;73:978–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Keyes PC, Adams EL, Chen Z, Bi L, Nachtrab G, Wang VJ, et al. Orchestrating opiate-associated memories in thalamic circuits. Neuron. 2020;107:1113–23.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lüscher C. The emergence of a circuit model for addiction. Annu Rev Neurosci. 2016;39:257–76.

    Article  PubMed  Google Scholar 

  10. Chiang CY, Cherng CG, Lai YT, Fan HY, Chuang JY, Kao GS, et al. Medial prefrontal cortex and nucleus accumbens core are involved in retrieval of the methamphetamine-associated memory. Behav Brain Res. 2009;197:24–30.

    Article  CAS  PubMed  Google Scholar 

  11. Euston DR, Gruber AJ, McNaughton BL. The role of medial prefrontal cortex in memory and decision making. Neuron. 2012;76:1057–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Anastasiades PG, Carter AG. Circuit organization of the rodent medial prefrontal cortex. Trends Neurosci. 2021;44:550–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Friedman NP, Robbins TW. The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology. 2022;47:72–89.

    Article  PubMed  Google Scholar 

  14. Ferenczi EA, Zalocusky KA, Liston C, Grosenick L, Warden MR, Amatya D, et al. Prefrontal cortical regulation of brainwide circuit dynamics and reward-related behavior. Science. 2016;351:aac9698.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ceceli AO, Bradberry CW, Goldstein RZ. The neurobiology of drug addiction: cross-species insights into the dysfunction and recovery of the prefrontal cortex. Neuropsychopharmacology. 2022;47:276–91.

    Article  PubMed  Google Scholar 

  16. Capriles N, Rodaros D, Sorge RE, Stewart J. A role for the prefrontal cortex in stress- and cocaine-induced reinstatement of cocaine seeking in rats. Psychopharmacol (Berl). 2003;168:66–74.

    Article  CAS  Google Scholar 

  17. Goldstein RZ, Volkow ND. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci. 2011;12:652–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C. Interneurons of the neocortical inhibitory system. Nat Rev Neurosci. 2004;5:793–807.

    Article  CAS  PubMed  Google Scholar 

  19. Van den Oever MC, Spijker S, Smit AB, De Vries TJ. Prefrontal cortex plasticity mechanisms in drug seeking and relapse. Neurosci Biobehav Rev. 2010;35:276–84.

    Article  PubMed  Google Scholar 

  20. Visser E, Matos MR, Mitrić MM, Kramvis I, van der Loo RJ, Mansvelder HD, et al. Extinction of cocaine memory depends on a feed-forward inhibition circuit within the medial prefrontal cortex. Biol Psychiatry. 2022;91:1029–38.

    Article  PubMed  Google Scholar 

  21. Pfarr S, Meinhardt MW, Klee ML, Hansson AC, Vengeliene V, Schönig K, et al. Losing control: excessive alcohol seeking after selective inactivation of cue-responsive neurons in the infralimbic cortex. J Neurosci. 2015;35:10750–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. West AE, Greenberg ME. Neuronal activity-regulated gene transcription in synapse development and cognitive function. Cold Spring Harb Perspect Biol. 2011;3:a005744.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Parker LA, McDonald RV. Reinstatement of both a conditioned place preference and a conditioned place aversion with drug primes. Pharm Biochem Behav. 2000;66:559–61.

    Article  CAS  Google Scholar 

  24. Dai W, Huang S, Luo Y, Cheng X, Xia P, Yang M, et al. Sex-specific transcriptomic signatures in brain regions critical for neuropathic pain-induced depression. Front Mol Neurosci. 2022;15:886916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang ZY, Guo LK, Han X, Song R, Dong GM, Ma CM, et al. Naltrexone attenuates methamphetamine-induced behavioral sensitization and conditioned place preference in mice. Behav Brain Res. 2021;399:112971.

    Article  CAS  PubMed  Google Scholar 

  26. Xue YX, Luo YX, Wu P, Shi HS, Xue LF, Chen C, et al. A memory retrieval-extinction procedure to prevent drug craving and relapse. Science. 2012;336:241–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Itzhak Y, Martin JL, Ali SF. Methamphetamine- and 1-methyl-4-phenyl- 1,2,3, 6-tetrahydropyridine-induced dopaminergic neurotoxicity in inducible nitric oxide synthase-deficient mice. Synapse. 1999;34:305–12.

    Article  CAS  PubMed  Google Scholar 

  28. Good RL, Radcliffe RA. Methamphetamine-induced locomotor changes are dependent on age, dose and genotype. Pharm Biochem Behav. 2011;98:101–11.

    Article  CAS  Google Scholar 

  29. Kitanaka N, Kitanaka J, Hall FS, Uhl GR, Watabe K, Kubo H, et al. Agmatine attenuates methamphetamine-induced hyperlocomotion and stereotyped behavior in mice. Behav Pharm. 2014;25:158–65.

    Article  CAS  Google Scholar 

  30. Kovács KJ. Measurement of immediate-early gene activation- c-fos and beyond. J Neuroendocrinol. 2008;20:665–72.

    Article  PubMed  Google Scholar 

  31. Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10:186–98.

    Article  CAS  PubMed  Google Scholar 

  32. Wheeler AL, Teixeira CM, Wang AH, Xiong X, Kovacevic N, Lerch JP, et al. Identification of a functional connectome for long-term fear memory in mice. PLoS Comput Biol. 2013;9:e1002853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hoover WB, Vertes RP. Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct. 2007;212:149–79.

    Article  PubMed  Google Scholar 

  34. Lucas EK, Clem RL. GABAergic interneurons: The orchestra or the conductor in fear learning and memory? Brain Res Bull. 2018;141:13–19.

    Article  CAS  PubMed  Google Scholar 

  35. Ye Z, Shi L, Li A, Chen C, Xue G. Retrieval practice facilitates memory updating by enhancing and differentiating medial prefrontal cortex representations. Elife. 2020;9:e57023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gallo FT, Katche C, Morici JF, Medina JH, Weisstaub NV. Immediate early genes, memory and psychiatric disorders: focus on c-Fos, Egr1 and Arc. Front Behav Neurosci. 2018;12:79.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Campos-Melo D, Galleguillos D, Sánchez N, Gysling K, Andrés ME. Nur transcription factors in stress and addiction. Front Mol Neurosci. 2013;6:44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Al-Nusaif M, Yang Y, Li S, Cheng C, Le W. The role of NURR1 in metabolic abnormalities of Parkinson’s disease. Mol Neurodegener. 2022;17:46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lambe EK, Fillman SG, Webster MJ, Shannon Weickert C. Serotonin receptor expression in human prefrontal cortex: balancing excitation and inhibition across postnatal development. PLoS One. 2011;6:e22799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yaman E, Gasper R, Koerner C, Wittinghofer A, Tazebay UH. RasGEF1A and RasGEF1B are guanine nucleotide exchange factors that discriminate between Rap GTP-binding proteins and mediate Rap2-specific nucleotide exchange. FEBS J. 2009;276:4607–16.

    Article  CAS  PubMed  Google Scholar 

  41. Strnisková M, Barancík M, Ravingerová T. Mitogen-activated protein kinases and their role in regulation of cellular processes. Gen Physiol Biophys. 2002;21:231–55.

    PubMed  Google Scholar 

  42. Waltereit R, Weller M. Signaling from cAMP/PKA to MAPK and synaptic plasticity. Mol Neurobiol. 2003;27:99–106.

    Article  CAS  PubMed  Google Scholar 

  43. Vuong CK, Wei W, Lee JA, Lin CH, Damianov A, de la Torre-Ubieta L, et al. Rbfox1 regulates synaptic transmission through the inhibitory neuron-specific vSNARE Vamp1. Neuron. 2018;98:127–141.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sommeijer JP, Levelt CN. Synaptotagmin-2 is a reliable marker for parvalbumin positive inhibitory boutons in the mouse visual cortex. PLoS One. 2012;7:e35323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shi W, Wei X, Wang X, Du S, Liu W, Song J, et al. Perineuronal nets protect long-term memory by limiting activity-dependent inhibition from parvalbumin interneurons. Proc Natl Acad Sci USA. 2019;116:27063–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gardner EL. Addiction and brain reward and antireward pathways. Adv Psychosom Med. 2011;30:22–60.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhang J, Guo X, Cai Z, Pan Y, Yang H, Fu Y, et al. Two kinds of transcription factors mediate chronic morphine-induced decrease in miR-105 in medial prefrontal cortex of rats. Transl Psychiatry. 2022;12:458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Otis JM, Fitzgerald MK, Yousuf H, Burkard JL, Drake M, Mueller D. Prefrontal neuronal excitability maintains cocaine-associated memory during retrieval. Front Behav Neurosci. 2018;12:119.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Li Y, Ge S, Li N, Chen L, Zhang S, Wang J, et al. NMDA and dopamine D1 receptors within NAc-shell regulate IEG proteins expression in reward circuit during cocaine memory reconsolidation. Neuroscience. 2016;315:45–69.

    Article  CAS  PubMed  Google Scholar 

  50. Zhao D, Zhang M, Tian W, Cao X, Yin L, Liu Y, et al. Neurophysiological correlate of incubation of craving in individuals with methamphetamine use disorder. Mol Psychiatry. 2021;26:6198–208.

    Article  CAS  PubMed  Google Scholar 

  51. Miller CA, Marshall JF. Altered Fos expression in neural pathways underlying cue-elicited drug seeking in the rat. Eur J Neurosci. 2005;21:1385–93.

    Article  PubMed  Google Scholar 

  52. Roth BL. DREADDs for neuroscientists. Neuron. 2016;89:683–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Raper J, Morrison RD, Daniels JS, Howell L, Bachevalier J, Wichmann T, et al. Metabolism and distribution of clozapine-n-oxide: implications for nonhuman primate chemogenetics. ACS Chem Neurosci. 2017;8:1570–76.

    Article  CAS  PubMed  Google Scholar 

  54. Fukushima H, Zhang Y, Kida S. Active transition of fear memory phase from reconsolidation to extinction through ERK-mediated prevention of reconsolidation. J Neurosci. 2021;41:1288–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Otis JM, Mueller D. Reversal of cocaine-associated synaptic plasticity in medial prefrontal cortex parallels elimination of memory retrieval. Neuropsychopharmacology. 2017;42:2000–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Otis JM, Dashew KB, Mueller D. Neurobiological dissociation of retrieval and reconsolidation of cocaine-associated memory. J Neurosci. 2013;33:1271–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Morales M, Margolis EB. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat Rev Neurosci. 2017;18:73–85.

    Article  CAS  PubMed  Google Scholar 

  58. Yang J, Chen J, Liu Y, Chen KH, Baraban JM, Qiu Z. Ventral tegmental area astrocytes modulate cocaine reward by tonically releasing GABA. Neuron. 2023;111:1104–1117.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Stubbendorff C, Hale E, Cassaday HJ, Bast T, Stevenson CW. Dopamine D1-like receptors in the dorsomedial prefrontal cortex regulate contextual fear conditioning. Psychopharmacol (Berl). 2019;236:1771–82.

    Article  CAS  Google Scholar 

  60. Ellwood IT, Patel T, Wadia V, Lee AT, Liptak AT, Bender KJ, et al. Tonic or phasic stimulation of dopaminergic projections to prefrontal cortex causes mice to maintain or deviate from previously learned behavioral strategies. J Neurosci. 2017;37:8315–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Huang S, Zhang Z, Gambeta E, Xu SC, Thomas C, Godfrey N, et al. Dopamine inputs from the ventral tegmental area into the medial prefrontal cortex modulate neuropathic pain-associated behaviors in mice. Cell Rep. 2020;31:107812.

    Article  CAS  PubMed  Google Scholar 

  62. Margolis EB, Lock H, Chefer VI, Shippenberg TS, Hjelmstad GO, Fields HL. Kappa opioids selectively control dopaminergic neurons projecting to the prefrontal cortex. Proc Natl Acad Sci USA. 2006;103:2938–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sherrill KR, Erdem UM, Ross RS, Brown TI, Hasselmo ME, Stern CE. Hippocampus and retrosplenial cortex combine path integration signals for successful navigation. J Neurosci. 2013;33:19304–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kwapis JL, Jarome TJ, Lee JL, Helmstetter FJ. The retrosplenial cortex is involved in the formation of memory for context and trace fear conditioning. Neurobiol Learn Mem. 2015;123:110–6.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sun W, Choi I, Stoyanov S, Senkov O, Ponimaskin E, Winter Y, et al. Context value updating and multidimensional neuronal encoding in the retrosplenial cortex. Nat Commun. 2021;12:6045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hattori R, Danskin B, Babic Z, Mlynaryk N, Komiyama T. Area-specificity and plasticity of history-dependent value coding during learning. Cell. 2019;177:1858–1872.e15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vann SD, Aggleton JP, Maguire EA. What does the retrosplenial cortex do? Nat Rev Neurosci. 2009;10:792–802.

    Article  CAS  PubMed  Google Scholar 

  68. Marchant NJ, Millan EZ, McNally GP. The hypothalamus and the neurobiology of drug seeking. Cell Mol Life Sci. 2012;69:581–97.

    Article  CAS  PubMed  Google Scholar 

  69. Slaker M, Churchill L, Todd RP, Blacktop JM, Zuloaga DG, Raber J, et al. Removal of perineuronal nets in the medial prefrontal cortex impairs the acquisition and reconsolidation of a cocaine-induced conditioned place preference memory. J Neurosci. 2015;35:4190–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Miller CA, Marshall JF. Altered prelimbic cortex output during cue-elicited drug seeking. J Neurosci. 2004;24:6889–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gao WJ, Wang Y, Goldman-Rakic PS. Dopamine modulation of perisomatic and peridendritic inhibition in prefrontal cortex. J Neurosci. 2003;23:1622–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cummings KA, Bayshtok S, Dong TN, Kenny PJ, Clem RL. Control of fear by discrete prefrontal GABAergic populations encoding valence-specific information. Neuron. 2022;110:3036–3052.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gonzalez AE, Jorgensen ET, Ramos JD, Harkness JH, Aadland JA, Brown TE, et al. Impact of perineuronal net removal in the rat medial prefrontal cortex on parvalbumin interneurons after reinstatement of cocaine conditioned place preference. Front Cell Neurosci. 2022;16:932391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Donato F, Rompani SB, Caroni P. Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning. Nature. 2013;504:272–6.

    Article  CAS  PubMed  Google Scholar 

  75. Caroni P, Donato F, Muller D. Structural plasticity upon learning: regulation and functions. Nat Rev Neurosci. 2012;13:478–90.

    Article  CAS  PubMed  Google Scholar 

  76. Roth FC, Draguhn A. GABA metabolism and transport: effects on synaptic efficacy. Neural Plast. 2012;2012:805830.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Tanimizu T, Kenney JW, Okano E, Kadoma K, Frankland PW, Kida S. Functional connectivity of multiple brain regions required for the consolidation of social recognition memory. J Neurosci. 2017;37:4103–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Guzowski JF, Setlow B, Wagner EK, McGaugh JL. Experience-dependent gene expression in the rat hippocampus after spatial learning: a comparison of the immediate-early genes Arc, c-fos, and zif268. J Neurosci. 2001;21:5089–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Labiner DM, Butler LS, Cao Z, Hosford DA, Shin C, McNamara JO. Induction of c-fos mRNA by kindled seizures: complex relationship with neuronal burst firing. J Neurosci. 1993;13:744–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Krukoff TL. c-fos Expression as a Marker of Functional Activity in the Brain. In: Boulton AA, Baker GB, Bateson AN, editors. Cell Neurobiology Techniques. Totowa, NJ: Humana Press. 1999:213-30.

  81. Mardinly AR, Spiegel I, Patrizi A, Centofante E, Bazinet JE, Tzeng CP, et al. Sensory experience regulates cortical inhibition by inducing IGF1 in VIP neurons. Nature. 2016;531:371–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gonzales BJ, Mukherjee D, Ashwal-Fluss R, Loewenstein Y, Citri A. Subregion-specific rules govern the distribution of neuronal immediate-early gene induction. Proc Natl Acad Sci USA. 2020;117:23304–10.

    Article  CAS  PubMed  Google Scholar 

  83. Durell TM, Kroutil LA, Crits-Christoph P, Barchha N, Van Brunt DL. Prevalence of nonmedical methamphetamine use in the United States. Subst Abus Treat Prev Policy. 2008;3:19.

    Article  Google Scholar 

  84. Hartwell EE, Moallem NR, Courtney KE, Glasner-Edwards S, Ray LA. Sex differences in the association between internalizing symptoms and craving in methamphetamine users. J Addict Med. 2016;10:395–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Nicolas C, Zlebnik NE, Farokhnia M, Leggio L, Ikemoto S, Shaham Y. Sex differences in opioid and psychostimulant craving and relapse: a critical review. Pharm Rev. 2022;74:119–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lynch WJ, Roth ME, Carroll ME. Biological basis of sex differences in drug abuse: preclinical and clinical studies. Psychopharmacol (Berl). 2002;164:121–37.

    Article  CAS  Google Scholar 

  87. Shansky RM, Murphy AZ. Considering sex as a biological variable will require a global shift in science culture. Nat Neurosci. 2021;24:457–64.

    Article  CAS  PubMed  Google Scholar 

  88. Eliot L, Beery AK, Jacobs EG, LeBlanc HF, Maney DL, McCarthy MM. Why and how to account for sex and gender in brain and behavioral research. J Neurosci. 2023;43:6344–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the animal facility and the core facility of the Zhongshan School of Medicine, Sun Yat-sen University. We thank Dr. Wei-Jye Lin for the helpful discussions. We also thank all members of the Zhao lab, Ye lab and Lin lab for valuable and helpful discussions and technical assistance during this project.

Funding

This study was supported by the National Natural Science Foundation of China (No. 81871535, No. 32271068), Key Project of the Basic and Applied Basic Research Foundation & Regional Joint Foundation of Guangdong Province, China (2021B1515120020), and the Science and Technology Planning Project of Guangdong Province, China (No. 2023B1212060018).

Author information

Authors and Affiliations

Authors

Contributions

HZ, XY and X-GW conceptualized and designed the research project; Y-BH and XD performed majority of the experiments. LL, C-CC, Z-JG, XC, DK, Y-WS and QL helped analyze the data. Y-BH, HZ, XY and X-GW wrote the manuscript.

Corresponding authors

Correspondence to Xiaojing Ye or Hu Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, YB., Deng, X., Liu, L. et al. Distinct roles of excitatory and inhibitory neurons in the medial prefrontal cortex in the expression and reconsolidation of methamphetamine-associated memory in male mice. Neuropsychopharmacol. (2024). https://doi.org/10.1038/s41386-024-01879-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41386-024-01879-2

Search

Quick links