Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Calcitonin receptor signaling in nucleus accumbens D1R- and D2R-expressing medium spiny neurons bidirectionally alters opioid taking in male rats

Subjects

Abstract

The high rates of relapse associated with current medications used to treat opioid use disorder (OUD) necessitate research that expands our understanding of the neural mechanisms regulating opioid taking to identify molecular substrates that could be targeted by novel pharmacotherapies to treat OUD. Recent studies show that activation of calcitonin receptors (CTRs) is sufficient to reduce the rewarding effects of addictive drugs in rodents. However, the role of central CTR signaling in opioid-mediated behaviors has not been studied. Here, we used single nuclei RNA sequencing (snRNA-seq), fluorescent in situ hybridization (FISH), and immunohistochemistry (IHC) to characterize cell type-specific patterns of CTR expression in the nucleus accumbens (NAc), a brain region that plays a critical role in voluntary drug taking. Using these approaches, we identified CTRs expressed on D1R- and D2R-expressing medium spiny neurons (MSNs) in the medial shell subregion of the NAc. Interestingly, Calcr transcripts were expressed at higher levels in D2R- versus D1R-expressing MSNs. Cre-dependent viral-mediated miRNA knockdown of CTRs in transgenic male rats was then used to determine the functional significance of endogenous CTR signaling in opioid taking. We discovered that reduced CTR expression specifically in D1R-expressing MSNs potentiated/augmented opioid self-administration. In contrast, reduced CTR expression specifically in D2R-expressing MSNs attenuated opioid self-administration. These findings highlight a novel cell type-specific mechanism by which CTR signaling in the ventral striatum bidirectionally modulates voluntary opioid taking and support future studies aimed at targeting central CTR-expressing circuits to treat OUD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Expression of Calcr in D1R- and D2R-expressing striatal neurons.
Fig. 2: Differential expression of CTRs in D1R- and D2R-expressing MSNs in the medial NAc shell.
Fig. 3: Reduced CTRa expression in D1R-expressing MSNs increases the acquisition of oxycodone taking.
Fig. 4: Reduced CTRa expression in D2R-expressing MSNs decreases the acquisition of oxycodone taking.

Similar content being viewed by others

Data availability

Single-nuclei RNA-sequencing data are available at the NCBI Gene Expression Omnibus (GEO) under accession number GSE171165.

References

  1. Volkow ND, Blanco C. The changing opioid crisis: development, challenges and opportunities. Mol Psychiatry. 2021;26:218–33.

    PubMed  Google Scholar 

  2. Florence CS, Zhou C, Luo F, Xu L. The economic burden of prescription opioid overdose, abuse, and dependence in the United States, 2013. Med Care. 2016;54:901–6.

    PubMed  PubMed Central  Google Scholar 

  3. SAMHSA. 2021. https://www.samhsa.gov/data/report/2020-nsduh-annual-national-report.

  4. Mattick RP, Breen C, Kimber J, Davoli M. Buprenorphine maintenance versus placebo or methadone maintenance for opioid dependence. Cochrane Database Syst Rev. 2014:CD002207.

  5. Humphreys K, Shover CL, Andrews CM, Bohnert ASB, Brandeau ML, Caulkins JP, et al. Responding to the opioid crisis in North America and beyond: recommendations of the Stanford-Lancet Commission. Lancet. 2022;399:555–604.

    PubMed  PubMed Central  Google Scholar 

  6. Volkow ND, Jones EB, Einstein EB, Wargo EM. Prevention and treatment of opioid misuse and addiction: a review. JAMA Psychiatry. 2019;76:208–16.

  7. Jerlhag E. Gut-brain axis and addictive disorders: a review with focus on alcohol and drugs of abuse. Pharmacol Ther. 2019;196:1–14.

    CAS  PubMed  Google Scholar 

  8. Merkel R, Moreno A, Zhang Y, Herman R, Ben Nathan J, Zeb S, et al. A novel approach to treating opioid use disorders: dual agonists of glucagon-like peptide-1 receptors and neuropeptide Y(2) receptors. Neurosci Biobehav Rev. 2021;131:1169–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hernandez NS, Schmidt HD. Central GLP-1 receptors: novel molecular targets for cocaine use disorder. Physiol Behav. 2019;206:93–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Farokhnia M, Faulkner ML, Piacentino D, Lee MR, Leggio L. Ghrelin: From a gut hormone to a potential therapeutic target for alcohol use disorder. Physiol Behav. 2019;204:49–57.

    CAS  PubMed  Google Scholar 

  11. Kalafateli AL, Vallöf D, Jerlhag E. Activation of amylin receptors attenuates alcohol-mediated behaviours in rodents. Addict Biol. 2019;24:388–402.

    CAS  PubMed  Google Scholar 

  12. Kalafateli AL, Vallöf D, Colombo G, Lorrai I, Maccioni P, Jerlhag E. An amylin analogue attenuates alcohol-related behaviours in various animal models of alcohol use disorder. Neuropsychopharmacology. 2019;44:1093–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kalafateli AL, Satir TM, Vallöf D, Zetterberg H, Jerlhag E. An amylin and calcitonin receptor agonist modulates alcohol behaviors by acting on reward-related areas in the brain. Prog Neurobiol. 2021;200:101969.

    CAS  PubMed  Google Scholar 

  14. Kalafateli AL, Aranäs C, Jerlhag E. Activation of the amylin pathway modulates cocaine-induced activation of the mesolimbic dopamine system in male mice. Horm Behav. 2021;127:104885.

    CAS  PubMed  Google Scholar 

  15. Aranäs C, Vestlund J, Witley S, Edvardsson CE, Kalafateli AL, Jerlhag E. Salmon calcitonin attenuates some behavioural responses to nicotine in male mice. Front Pharmacol. 2021;12:685631.

    PubMed  PubMed Central  Google Scholar 

  16. Reiner DJ, Fredriksson I, Lofaro OM, Bossert JM, Shaham Y. Relapse to opioid seeking in rat models: behavior, pharmacology and circuits. Neuropsychopharmacology. 2019;44:465–77.

    PubMed  Google Scholar 

  17. Lobo MK, Nestler EJ. The striatal balancing act in drug addiction: distinct roles of direct and indirect pathway medium spiny neurons. Front Neuroanat. 2011;5:41.

    PubMed  PubMed Central  Google Scholar 

  18. Graziane NM, Sun S, Wright WJ, Jang D, Liu Z, Huang YH, et al. Opposing mechanisms mediate morphine- and cocaine-induced generation of silent synapses. Nat Neurosci. 2016;19:915–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hearing MC, Jedynak J, Ebner SR, Ingebretson A, Asp AJ, Fischer RA, et al. Reversal of morphine-induced cell-type-specific synaptic plasticity in the nucleus accumbens shell blocks reinstatement. Proc Natl Acad Sci USA. 2016;113:757–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Russell SE, Puttick DJ, Sawyer AM, Potter DN, Mague S, Carlezon WA Jr, et al. Nucleus accumbens AMPA receptors are necessary for morphine-withdrawal-induced negative-affective states in rats. J Neurosci. 2016;36:5748–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhu Y, Wienecke CF, Nachtrab G, Chen X. A thalamic input to the nucleus accumbens mediates opiate dependence. Nature. 2016;530:219–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. O’Neal TJ, Bernstein MX, MacDougall DJ, Ferguson SM. A conditioned place preference for heroin is signaled by increased dopamine and direct pathway activity and decreased indirect pathway activity in the nucleus accumbens. J Neurosci. 2022;42:2011–24.

    PubMed  PubMed Central  Google Scholar 

  23. O’Neal TJ, Nooney MN, Thien K, Ferguson SM. Chemogenetic modulation of accumbens direct or indirect pathways bidirectionally alters reinstatement of heroin-seeking in high- but not low-risk rats. Neuropsychopharmacology. 2020;45:1251–62.

    PubMed  Google Scholar 

  24. Mietlicki-Baase EG, Rupprecht LE, Olivos DR, Zimmer DJ, Alter MD, Pierce RC, et al. Amylin receptor signaling in the ventral tegmental area is physiologically relevant for the control of food intake. Neuropsychopharmacology. 2013;38:1685–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Baisley SK, Bremer QZ, Bakshi VP, Baldo BA. Antipsychotic-like actions of the satiety peptide, amylin, in ventral striatal regions marked by overlapping calcitonin receptor and RAMP-1 gene expression. J Neurosci. 2014;34:4318–25.

    PubMed  Google Scholar 

  26. Becskei C, Riediger T, Zünd D, Wookey P, Lutz TA. Immunohistochemical mapping of calcitonin receptors in the adult rat brain. Brain Res. 2004;1030:221–33.

    CAS  PubMed  Google Scholar 

  27. Hendrikse ER, Rees TA, Tasma Z, Le Foll C, Lutz TA, Siow A, et al. Calcitonin receptor antibody validation and expression in the rodent brain. Cephalalgia. 2022;42:815–26.

    PubMed  Google Scholar 

  28. Nakamoto H, Soeda Y, Takami S, Minami M, Satoh M. Localization of calcitonin receptor mRNA in the mouse brain: coexistence with serotonin transporter mRNA. Brain Res Mol Brain Res. 2000;76:93–102.

    CAS  PubMed  Google Scholar 

  29. Job MO, Chojnacki MR, Daiwile AP, Cadet JL. Chemogenetic inhibition of dopamine D1-expressing neurons in the dorsal striatum does not alter methamphetamine intake in either male or female long evans rats. Neurosci Lett. 2020;729:134987.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Strong CE, Hagarty DP, Brea Guerrero A, Schoepfer KJ, Cajuste SM, Kabbaj M. Chemogenetic selective manipulation of nucleus accumbens medium spiny neurons bidirectionally controls alcohol intake in male and female rats. Sci Rep. 2020;10:19178.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Garcia-Keller C, Scofield MD, Neuhofer D, Varanasi S, Reeves MT, Hughes B, et al. Relapse-associated transient synaptic potentiation requires integrin-mediated activation of focal adhesion kinase and cofilin in D1-expressing neurons. J Neurosci. 2020;40:8463–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Reiner BC, Zhang Y, Stein LM, Perea ED, Arauco-Shapiro G, Ben Nathan J, et al. Single nucleus transcriptomic analysis of rat nucleus accumbens reveals cell type-specific patterns of gene expression associated with volitional morphine intake. Transl Psychiatry. 2022;12:374.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Savell KE, Tuscher JJ, Zipperly ME, Duke CG, Phillips RA 3rd, Bauman AJ, et al. A dopamine-induced gene expression signature regulates neuronal function and cocaine response. Sci Adv. 2020;6:eaba4221.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. He J, Kleyman M, Chen J, Alikaya A, Rothenhoefer KM, Ozturk BE, et al. Transcriptional and anatomical diversity of medium spiny neurons in the primate striatum. Curr Biol. 2021;31:5473–86.e6.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. De Guglielmo G, Iemolo A, Nur A, Turner A, Montilla-Perez P, Martinez A, et al. Reelin deficiency exacerbates cocaine-induced hyperlocomotion by enhancing neuronal activity in the dorsomedial striatum. Genes Brain Behav. 2022;21:e12828.

    PubMed  PubMed Central  Google Scholar 

  36. Reiner DJ, Mietlicki-Baase EG, Olivos DR, McGrath LE, Zimmer DJ, Koch-Laskowski K, et al. Amylin acts in the lateral dorsal tegmental nucleus to regulate energy balance through gamma-aminobutyric acid signaling. Biol Psychiatry. 2017;82:828–38.

  37. Mietlicki-Baase EG, Reiner DJ, Cone JJ, Olivos DR, McGrath LE, Zimmer DJ, et al. Amylin modulates the mesolimbic dopamine system to control energy balance. Neuropsychopharmacology. 2015;40:372–85.

    CAS  PubMed  Google Scholar 

  38. Christopoulos G, Perry KJ, Morfis M, Tilakaratne N, Gao Y, Fraser NJ, et al. Multiple amylin receptors arise from receptor activity-modifying protein interaction with the calcitonin receptor gene product. Mol Pharmacol. 1999;56:235–42.

    CAS  PubMed  Google Scholar 

  39. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. Academic Press: New York; 1997.

  40. Hernandez NS, Weir VR, Ragnini K, Merkel R, Zhang Y, Mace K, et al. GLP-1 receptor signaling in the laterodorsal tegmental nucleus attenuates cocaine seeking by activating GABAergic circuits that project to the VTA. Mol Psychiatry. 2021;26:4394–408.

    CAS  PubMed  Google Scholar 

  41. Zhang Y, Kahng MW, Elkind JA, Weir VR, Hernandez NS, Stein LM, et al. Activation of GLP-1 receptors attenuates oxycodone taking and seeking without compromising the antinociceptive effects of oxycodone in rats. Neuropsychopharmacology. 2020;45:451–61.

    CAS  PubMed  Google Scholar 

  42. Schmidt HD, Mietlicki-Baase EG, Ige KY, Maurer JJ, Reiner DJ, Zimmer DJ, et al. Glucagon-like peptide-1 receptor activation in the ventral tegmental area decreases the reinforcing efficacy of cocaine. Neuropsychopharmacology. 2016;41:1917–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Arlotta P, Molyneaux BJ, Jabaudon D, Yoshida Y, Macklis JD. Ctip2 controls the differentiation of medium spiny neurons and the establishment of the cellular architecture of the striatum. J Neurosci. 2008;28:622–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Jiang R, Sun T, Song D, Li JJ. Statistics or biology: the zero-inflation controversy about scRNA-seq data. Genome Biol. 2022;23:31.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Twery MJ, Kirkpatrick B, Lewis MH, Mailman RB, Cooper CW. Antagonistic behavioral effects of calcitonin and amphetamine in the rat. Pharmacol. Biochem Behav. 1986;24:1203–7.

    CAS  PubMed  Google Scholar 

  46. Clementi G, Valerio C, Emmi I, Prato A, Drago F. Behavioral effects of amylin injected intracerebroventricularly in the rat. Peptides. 1996;17:589–91.

    CAS  PubMed  Google Scholar 

  47. Soares-Cunha C, Domingues AV, Correia R, Coimbra B, Vieitas-Gaspar N, de Vasconcelos NAP, et al. Distinct role of nucleus accumbens D2-MSN projections to ventral pallidum in different phases of motivated behavior. Cell Rep. 2022;38:110380.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Cole SL, Robinson MJF, Berridge KC. Optogenetic self-stimulation in the nucleus accumbens: D1 reward versus D2 ambivalence. PLOS One. 2018;13:e0207694.

    PubMed  PubMed Central  Google Scholar 

  49. Soares-Cunha C, Coimbra B, Domingues AV, Vasconcelos N, Sousa N, Rodrigues AJ. Nucleus accumbens microcircuit underlying D2-MSN-driven increase in motivation. eNeuro. 2018;5:ENEURO.0386-18.

  50. Aubry JM, Schulz MF, Pagliusi S, Schulz P, Kiss JZ. Coexpression of dopamine D2, and substance P (neurokinin-1) receptor messenger RNAs by a subpopulation of cholinergic neurons in the rat striatum. Neuroscience. 1993;53:417–24.

    CAS  PubMed  Google Scholar 

  51. Maurice N, Mercer J, Chan CS, Hernandez-Lopez S, Held J, Tkatch T, et al. D2 dopamine receptor-mediated modulation of voltage-dependent Na+ channels reduces autonomous activity in striatal cholinergic interneurons. J Neurosci. 2004;24:10289–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Yan Z, Song W-J, Surmeier DJ. D2 dopamine receptors reduce N-Type Ca2+ currents in rat neostriatal cholinergic interneurons through a membrane-delimited, protein-kinase-C-insensitive pathway. J Neurophysiol. 1997;77:1003–15.

    CAS  PubMed  Google Scholar 

  53. Alcantara AA, Chen V, Herring BE, Mendenhall JM, Berlanga ML. Localization of dopamine D2 receptors on cholinergic interneurons of the dorsal striatum and nucleus accumbens of the rat. Brain Res. 2003;986:22–9.

    CAS  PubMed  Google Scholar 

  54. Kimura H, McGeer PL, Peng F, McGeer EG. Choline acetyltransferase-containing neurons in rodent brain demonstrated by immunohistochemistry. Science. 1980;208:1057–9.

    CAS  PubMed  Google Scholar 

  55. Cachope R, Cheer JF. Local control of striatal dopamine release. Front Behav Neurosci. 2014;8:188.

    PubMed  PubMed Central  Google Scholar 

  56. Cragg SJ. Meaningful silences: how dopamine listens to the ACh pause. Trends Neurosci. 2006;29:125–31.

    CAS  PubMed  Google Scholar 

  57. Collins AL, Aitken TJ, Huang IW, Shieh C, Greenfield VY, Monbouquette HG, et al. Nucleus accumbens cholinergic interneurons oppose cue-motivated behavior. Biol Psychiatry. 2019;86:388–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee JH, Ribeiro EA, Kim J, Ko B, Kronman H, Jeong YH, et al. Dopaminergic regulation of nucleus accumbens cholinergic interneurons demarcates susceptibility to cocaine addiction. Biol Psychiatry. 2020;88:746–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Lewis RG, Serra M, Radl D, Gori M, Tran C, Michalak SE, et al. Dopaminergic control of striatal cholinergic interneurons underlies cocaine-induced psychostimulation. Cell Rep. 2020;31:107527.

    CAS  PubMed  Google Scholar 

  60. Collins AL, Aitken TJ, Greenfield VY, Ostlund SB, Wassum KM. Nucleus accumbens acetylcholine receptors modulate dopamine and motivation. Neuropsychopharmacology. 2016;41:2830–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhao Z-D, Han X, Chen R, Liu Y, Bhattacherjee A, Chen W, et al. A molecularly defined D1 medium spiny neuron subtype negatively regulates cocaine addiction. Sci Adv. 2022;8:eabn3552.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Al-Hasani R, McCall JG, Shin G, Gomez AM, Schmitz GP, Bernardi JM, et al. Distinct subpopulations of nucleus accumbens dynorphin neurons drive aversion and reward. Neuron. 2015;87:1063–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Soares-Cunha C, de Vasconcelos NAP, Coimbra B, Domingues AV, Silva JM, Loureiro-Campos E, et al. Nucleus accumbens medium spiny neurons subtypes signal both reward and aversion. Mol Psychiatry. 2020;25:3241–55.

    CAS  PubMed  Google Scholar 

  64. Kravitz AV, Tye LD, Kreitzer AC. Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat Neurosci. 2012;15:816–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Hay DL, Garelja ML, Poyner DR, Walker CS. Update on the pharmacology of calcitonin/CGRP family of peptides: IUPHAR Review 25. Br J Pharmacol. 2018;175:3–17.

    CAS  PubMed  Google Scholar 

  66. Hay DL, Chen S, Lutz TA, Parkes DG, Roth JD. Amylin: pharmacology, physiology, and clinical potential. Pharmacol Rev. 2015;67:564–600.

    CAS  PubMed  Google Scholar 

  67. Masi L, Brandi ML. Calcitonin and calcitonin receptors. Clin Cases Miner Bone Metab. 2007;4:117–22.

    PubMed  PubMed Central  Google Scholar 

  68. Bower RL, Hay DL. Amylin structure-function relationships and receptor pharmacology: implications for amylin mimetic drug development. Br J Pharmacol. 2016;173:1883–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Beaumont K, Kenney MA, Young AA, Rink TJ. High affinity amylin binding sites in rat brain. Mol Pharmacol. 1993;44:493–7.

    CAS  PubMed  Google Scholar 

  70. Sexton PM, Paxinos G, Kenney MA, Wookey PJ, Beaumont K. In vitro autoradiographic localization of amylin binding sites in rat brain. Neuroscience. 1994;62:553–67.

    CAS  PubMed  Google Scholar 

  71. Kalafateli AL, Vestlund J, Raun K, Egecioglu E, Jerlhag E. Effects of a selective long-acting amylin receptor agonist on alcohol consumption, food intake and body weight in male and female rats. Addict Biol. 2021;26:e12910.

    CAS  PubMed  Google Scholar 

  72. Mavrikaki M, Pravetoni M, Page S, Potter D, Chartoff E. Oxycodone self-administration in male and female rats. Psychopharmacology. 2017;234:977–87.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Antonia Caffrey, Suditi Rahematpura and Kael Ragnini for their technical contributions to this project.

Funding

This work was supported by the following grants from the National Institutes of Health: R01 DA037897 (HDS), R01 DK105155 (HDS and MRK), R21 DA045792 (HDS) and R01 DA044015 (RCC). HDS and JB were partially supported by the Velay Women’s Science Research Fellowship and a Benjamin Franklin Scholars Summer Research Grant from the Center for Undergraduate Research & Fellowships (CURF) at the University of Pennsylvania. HDS and AM were partially supported by a Pincus-Magaziner Family Undergraduate Research Award, a Mary L. and Matthew S. Santirocco Undergraduate Research Award, and an Ernest M. Brown, Jr. College Alumni Society Undergraduate Research Grant from CURF at the University of Pennsylvania. HDS and RM were partially supported by a Pincus-Magaziner Family Undergraduate Research Award from CURF at the University of Pennsylvania. HDS and MWK were partially supported by a Louis H Castor, M.D., C’48 Undergraduate Research Grant from CURF at the University of Pennsylvania. RCC was partially supported by a State of Pennsylvania Department of Health Nonformula Tobacco Settlement Act Grant, Pharmacogenetics of Opioid Use Disorder.

Author information

Authors and Affiliations

Authors

Contributions

YZ, JB, and RM contributed to the acquisition and analyses of the data as well as drafted the manuscript. AM and MWK also contributed to data collection. BCR and RCC collected and analyzed snRNA-seq data and helped draft the manuscript. MRH contributed to control and CTRa KD virus design. HDS was responsible for the study concept and design, supervised the acquisition of the data, and helped draft the manuscript. All authors reviewed content and approved the final version for publication.

Corresponding author

Correspondence to Heath D. Schmidt.

Ethics declarations

Competing interests

The authors declare no competing interests. MRH and BCR receive research funds from Boehringer Ingelheim and Novo Nordisk that were not used to support these studies.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Ben Nathan, J., Moreno, A. et al. Calcitonin receptor signaling in nucleus accumbens D1R- and D2R-expressing medium spiny neurons bidirectionally alters opioid taking in male rats. Neuropsychopharmacol. 48, 1878–1888 (2023). https://doi.org/10.1038/s41386-023-01634-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-023-01634-z

This article is cited by

Search

Quick links