Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ACUTE MYELOID LEUKEMIA

Preclinical efficacy of targeting epigenetic mechanisms in AML with 3q26 lesions and EVI1 overexpression

Abstract

AML with chromosomal alterations involving 3q26 overexpresses the transcription factor (TF) EVI1, associated with therapy refractoriness and inferior overall survival in AML. Consistent with a CRISPR screen highlighting BRD4 dependency, treatment with BET inhibitor (BETi) repressed EVI1, LEF1, c-Myc, c-Myb, CDK4/6, and MCL1, and induced apoptosis of AML cells with 3q26 lesions. Tegavivint (TV, BC-2059), known to disrupt the binding of nuclear β-catenin and TCF7L2/LEF1 with TBL1, also inhibited co-localization of EVI1 with TBL1 and dose-dependently induced apoptosis in AML cell lines and patient-derived (PD) AML cells with 3q26.2 lesions. TV treatment repressed EVI1, attenuated enhancer activity at ERG, TCF7L2, GATA2 and MECOM loci, abolished interactions between MYC enhancers, repressing AML stemness while upregulating mRNA gene-sets of interferon/inflammatory response, TGF-β signaling and apoptosis-regulation. Co-treatment with TV and BETi or venetoclax induced synergistic in vitro lethality and reduced AML burden, improving survival of NSG mice harboring xenografts of AML with 3q26.2 lesions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Treatment with BET inhibitor OTX015 or β-catenin antagonist TV depletes EVI1 and c-Myc expression and dose-dependently induces lethality in 3q26.2-rearranged EVI1-expressing AML cells.
Fig. 2: Treatment with TV blocks TBL1 co-localization with key transcription factors β-catenin, LEF1 and EVI1.
Fig. 3: Treatment with TV reduces H3K27Ac occupancy on super-enhancer-driven genes, the MECOM locus and affects chromatin looping of the MYC super-enhancer with its promoter in 3q26.2-rearranged AML cells.
Fig. 4: Treatment with TV-induced inflammatory response and apoptosis gene-sets with concomitant depletion of MYC target gene-sets and EVI1 target genes in 3q26.2-rearranged AML cells.
Fig. 5: TV treatment depletes EVI1 and MYC levels in phenotypically defined leukemia stem cells.
Fig. 6: Co-treatment with TV and OTX015 or venetoclax exerts synergistic lethal activity against 3q26.2-rearranged AML cells.
Fig. 7: Compared to single agent treatment, co-treatment with TV and OTX015 or venetoclax exerts superior anti-leukemia activity and improves survival of mice bearing 3q26.2-rearranged AML xenografts.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available in the GEO repository as a Super Series and have been assigned Accession ID: GSE247095.

References

  1. Birdwell C, Fiskus W, Kadia TM, DiNardo CD, Mill CP, Bhalla KN. EVI1 dysregulation: impact on biology and therapy of myeloid malignancies. Blood Cancer J. 2021;11:64.

    PubMed  PubMed Central  Google Scholar 

  2. Morishita K, Parker DS, Mucenski ML, Jenkins NA, Copeland NG, Ihle JN. Retroviral activation of a novel gene encoding a zinc finger protein in IL-3-dependent myeloid leukemia cell lines. Cell. 1988;54:831–40.

    CAS  PubMed  Google Scholar 

  3. Perkins AS, Fishel R, Jenkins NA, Copeland NG. Evi-1: a murine zinc finger proto-oncogene, encodes a sequence-specific DNA-binding protein. Mol Cell Biol. 1991;11:2665–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Delwel R, Funabiki T, Kreider BL, Morishita K, Ihle JN. Four of the seven zinc fingers of the Evi-1 myeloid-transforming gene are required for sequence-specific binding to GA(C/T)AAGA(T/C)AAGATAA. Mol Cell Biol. 1993;13:4291–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang Y, Stehling-Sun S, Lezon-Geyda K, Juneja SC, Coillard L, Chatterjee G, et al. PR-domain-containing Mds1-Evi1 is critical for long-term hematopoietic stem cell function. Blood. 2011;118:3853–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kataoka K, Sato T, Yoshimi A, Goyama S, Tsuruta T, Kobayashi H, et al. Evi1 is essential for hematopoietic stem cell self-renewal, and its expression marks hematopoietic cells with long-term multilineage repopulating activity. J Exp Med. 2011;208:2403–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Du Y, Jenkins NA, Copeland NG. Insertional mutagenesis identifies genes that promote the immortalization of primary bone marrow progenitor cells. Blood. 2005;106:3932–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Morishita K, Parganas E, Matsugi T, Ihle JN. Expression of the Evi-1 zinc finger gene in 32Dc13 myeloid cells blocks granulocytic differentiation in response to granulocyte colony-stimulating factor. Mol Cell Biol. 1992;12:183–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Steinleitner K, Rampetsreiter P, Köffel R, Ramanathan G, Mannhalter C, Strobl H, et al. EVI1 and MDS1/EVI1 expression during primary human hematopoietic progenitor cell differentiation into various myeloid lineages. Anticancer Res. 2012;32:4883–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wilson M, Tsakraklides V, Tran M, Xiao YY, Zhang Y, Perkins AS. EVI1 interferes with myeloid maturation via transcriptional repression of Cebpa, via binding to two far downstream regulatory elements. J Biol Chem. 2016;291:13591–607.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cai SF, Chu SH, Goldberg AD, Parvin S, Koche RP, Glass JL, et al. Leukemia cell of origin influences apoptotic priming and sensitivity to LSD1 inhibition. Cancer Discov. 2020;10:1500–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Senyuk V, Sinha KK, Li D, Rinaldi CR, Yanamandra S, Nucifora G. Repression of RUNX1 activity by EVI1: a new role of EVI1 in leukemogenesis. Cancer Res. 2007;67:5658–66.

    CAS  PubMed  Google Scholar 

  13. Kreider BL, Orkin SH, Ihle JN. Loss of erythropoietin responsiveness in erythroid progenitors due to expression of the Evi-1 myeloid-transforming gene. Proc Natl Acad Sci USA. 1993;90:6454–8.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Laricchia-Robbio L, Premanand K, Rinaldi CR, Nucifora G. EVI1 Impairs myelopoiesis by deregulation of PU.1 function. Cancer Res. 2009;69:1633–42.

    CAS  PubMed  Google Scholar 

  15. Ayoub E, Wilson MP, McGrath KE, Li AJ, Frisch BJ, Palis J, et al. EVI1 overexpression reprograms hematopoiesis via upregulation of Spi1 transcription. Nat Commun. 2018;9:4239.

    ADS  PubMed  PubMed Central  Google Scholar 

  16. Hinai AA, Valk PJ. Review: Aberrant EVI1 expression in acute myeloid leukaemia. Br J Haematol. 2016;172:870–8.

    CAS  PubMed  Google Scholar 

  17. Ottema S, Mulet-Lazaro R, Beverloo HB, Erpelinck CAJ, van Herk S, Helm RV, et al. Atypical 3q26/MECOM rearrangements genocopy inv(3)/t(3;3) in acute myeloid leukemia. Blood. 2020;136:224–34.

    PubMed  Google Scholar 

  18. Groschel S, Sanders MA, Hoogenboezem R, de Wit E, Bouwman BAM, Erpelinck C, et al. A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia. Cell. 2014;157:369–81.

    CAS  PubMed  Google Scholar 

  19. Yamazaki H, Suzuki M, Otsuki A, Shimizu R, Bresnick EH, Engel JD, et al. A remote GATA2 hematopoietic enhancer drives leukemogenesis in inv(3)(q21;q26) by activating EVI1 expression. Cancer Cell. 2014;25:415–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ottema S, Mulet-Lazaro R, Erpelinck-Verschueren C, van Herk S, Havermans M, Arricibita Varea A, et al. The leukemic oncogene EVI1 hijacks a MYC super-enhancer by CTCF-facilitated loops. Nat Commun. 2021;12:5679.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Katayama S, Suzuki M, Yamaoka A, Keleku-Lukwete N, Katsuoka F, Otsuki A, et al. GATA2 haploinsufficiency accelerates EVI1-driven leukemogenesis. Blood. 2017;130:908–19.

    CAS  PubMed  Google Scholar 

  22. Yamaoka A, Suzuki M, Katayama S, Orihara D, Engel JD, Yamamoto M. EVI1 and GATA2 misexpression induced by inv(3)(q21q26) contribute to megakaryocyte-lineage skewing and leukemogenesis. Blood Adv. 2020;4:1722–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sun J, Konoplev SN, Wang X, Cui W, Chen SS, Medeiros LJ, et al. De novo acute myeloid leukemia with inv(3)(q21q26.2) or t(3;3)(q21;q26.2): a clinicopathologic and cytogenetic study of an entity recently added to the WHO classification. Mod Pathol. 2011;24:384–9.

    CAS  PubMed  Google Scholar 

  24. Lugthart S, Gröschel S, Beverloo HB, Kayser S, Valk PJ, van Zelderen-Bhola SL, et al. Clinical, molecular, and prognostic significance of WHO type inv(3)(q21q26.2)/t(3;3)(q21;q26.2) and various other 3q abnormalities in acute myeloid leukemia. J Clin Oncol. 2010;28:3890–8.

    PubMed  Google Scholar 

  25. Sitges M, Boluda B, Garrido A, Morgades M, Granada I, Barragan E, et al. Acute myeloid leukemia with inv(3)(q21.3q26.2)/t(3;3)(q21.3;q26.2): Study of 61 patients treated with intensive protocols. Eur J Haematol. 2020;105:138–47.

    CAS  PubMed  Google Scholar 

  26. Richard-Carpentier G, Rausch CR, Sasaki K, Hammond D, Morita K, Takahashi K, et al. Characteristics and clinical outcomes of patients with acute myeloid leukemia with inv(3)(q21q26.2) or t(3;3)(q21;q26.2). Haematologica. 2023;108:2331–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Schmoellerl J, Barbosa IAM, Minnich M, Andersch F, Smeenk L, Havermans M, et al. EVI1 drives leukemogenesis through aberrant ERG activation. Blood. 2023;141:453–66.

    CAS  PubMed  Google Scholar 

  28. Glass C, Wuertzer C, Cui X, Bi Y, Davuluri R, Xiao YY, et al. Global identification of EVI1 target genes in acute myeloid leukemia. PLoS One. 2013;8:e67134.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pradhan AK, Mohapatra AD, Nayak KB, Chakraborty S. Acetylation of the proto-oncogene EVI1 abrogates Bcl-xL promoter binding and induces apoptosis. PLoS One. 2011;6:e25370.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Buonamici S, Li D, Chi Y, Zhao R, Wang X, Brace L, et al. EVI1 induces myelodysplastic syndrome in mice. J Clin Invest. 2004;114:713–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Groschel S, Sanders MA, Hoogenboezem R, Zeilemaker A, Havermans M, Erpelinck C, et al. Mutational spectrum of myeloid malignancies with inv(3)/t(3;3) reveals a predominant involvement of RAS/RTK signaling pathways. Blood. 2015;125:133–9.

    PubMed  PubMed Central  Google Scholar 

  32. Tanaka A, Nakano TA, Nomura M, Yamazaki H, Bewersdorf JP, Mulet-Lazaro R, et al. Aberrant EVI1 splicing contributes to EVI1-rearranged leukemia. Blood. 2022;140:875–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lavallee VP, Gendron P, Lemieux S, D’Angelo G, Hebert J, Sauvageau G. EVI1-rearranged acute myeloid leukemias are characterized by distinct molecular alterations. Blood. 2015;125:140–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Will B, Steidl U. Combinatorial haplo-deficient tumor suppression in 7q-deficient myelodysplastic syndrome and acute myeloid leukemia. Cancer Cell. 2014;25:555–7.

    CAS  PubMed  Google Scholar 

  35. Groschel S, Lugthart S, Schlenk RF, Valk PJ, Eiwen K, Goudswaard C, et al. High EVI1 expression predicts outcome in younger adult patients with acute myeloid leukemia and is associated with distinct cytogenetic abnormalities. J Clin Oncol. 2010;28:2101–7.

    PubMed  Google Scholar 

  36. Manachai N, Saito Y, Nakahata S, Bahirvani AG, Osato M, Morishita K. Activation of EVI1 transcription by the LEF1/beta-catenin complex with p53-alteration in myeloid blast crisis of chronic myeloid leukemia. Biochem Biophys Res Commun. 2017;482:994–1000.

    CAS  PubMed  Google Scholar 

  37. Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL, et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med. 2004;351:657–67.

    CAS  PubMed  Google Scholar 

  38. Saenz DT, Fiskus W, Manshouri T, Mill CP, Qian Y, Raina K, et al. Targeting nuclear β-catenin as therapy for post-myeloproliferative neoplasm secondary AML. Leukemia. 2019;33:1373–86.

    CAS  PubMed  Google Scholar 

  39. Saenz DT, Fiskus W, Mill CP, Perera D, Manshouri T, Lara BH, et al. Mechanistic basis and efficacy of targeting the β-catenin-TCF7L2-JMJD6-c-Myc axis to overcome resistance to BET inhibitors. Blood. 2020;135:1255–69.

    PubMed  PubMed Central  Google Scholar 

  40. Mill CP, Fiskus W, DiNardo CD, Qian Y, Raina K, Rajapakshe K, et al. RUNX1 targeted therapy for AML expressing somatic or germline mutation in RUNX1. Blood. 2019;134:59–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Fiskus W, Saba N, Shen M, Ghias M, Liu J, Gupta SD, et al. Auranofin induces lethal oxidative and endoplasmic reticulum stress and exerts potent preclinical activity against chronic lymphocytic leukemia. Cancer Res. 2014;74:2520–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Fiskus W, Mill CP, Nabet B, Perera D, Birdwell C, Manshouri T, et al. Superior efficacy of co-targeting GFI1/KDM1A and BRD4 against AML and post-MPN secondary AML cells. Blood Cancer J. 2021;11:98.

    PubMed  PubMed Central  Google Scholar 

  43. Bagchi S, Fredriksson R, Wallén-Mackenzie Å. In situ Proximity Ligation Assay (PLA). Methods Mol Biol. 2015;1318:149–59.

    PubMed  Google Scholar 

  44. Izutsu K, Kurokawa M, Imai Y, Maki K, Mitani K, Hirai H. The corepressor CtBP interacts with Evi-1 to repress transforming growth factor beta signaling. Blood. 2001;97:2815–22.

    CAS  PubMed  Google Scholar 

  45. Elsayed AH, Rafiee R, Cao X, Raimondi S, Downing JR, Ribeiro R, et al. A six-gene leukemic stem cell score identifies high risk pediatric acute myeloid leukemia. Leukemia. 2020;34:735–45.

    CAS  PubMed  Google Scholar 

  46. Smeenk L, Ottema S, Mulet-Lazaro R, Ebert A, Havermans M, Varea AA, et al. Selective requirement of MYB for oncogenic hyperactivation of a translocated enhancer in leukemia. Cancer Discov. 2021;11:2868–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hnisz D, Schuijers J, Lin CY, Weintraub AS, Abraham BJ, Lee TI, et al. Convergence of developmental and oncogenic signaling pathways at transcriptional super-enhancers. Mol Cell. 2015;58:362–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Saint-André V, Federation AJ, Lin CY, Abraham BJ, Reddy J, Lee TI, et al. Models of human core transcriptional regulatory circuitries. Genome Res. 2016;26:385–96.

    PubMed  PubMed Central  Google Scholar 

  49. Jin L, Garcia J, Chan E, de la Cruz C, Segal E, Merchant M, et al. Therapeutic targeting of the CBP/p300 bromodomain blocks the growth of castration-resistant prostate cancer. Cancer Res. 2017;77:5564–75.

    CAS  PubMed  Google Scholar 

  50. Short NJ, Konopleva M, Kadia TM, Borthakur G, Ravandi F, DiNardo CD, et al. Advances in the treatment of acute myeloid leukemia: new drugs and new challenges. Cancer Discov. 2020;10:506–25.

    CAS  PubMed  Google Scholar 

  51. Luskin MR, Murakami MA, Manalis SR, Weinstock DM. Targeting minimal residual disease: a path to cure? Nat Rev Cancer. 2018;18:255–63.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Advanced Technology Genomics Core (ATGC), Flow Cytometry and Cellular Imaging (FCCI) Core Facility, which are supported by the MD Anderson Cancer Center Support Grant 5P30 CA016672-40. NextGen sequencing studies performed utilizing the NovaSeq6000 were supported by a grant from the NIH (1S10OD024977-01). KNB was supported by a grant from the NIH (R01 CA255721). This research is supported in part by the MD Anderson Cancer Center Leukemia SPORE (P50 CA100632).

Author information

Authors and Affiliations

Authors

Contributions

KNB designed the study, analyzed data, and wrote the manuscript. XR and XS performed bioinformatics analyses. CB, WF, CPM, JAD, KD and JDK performed research and analyzed the data. TMK, KS, ND, CDD, NP, GB, SS, SH and HK contributed critical reagents. WF also wrote the manuscript.

Corresponding author

Correspondence to Kapil N. Bhalla.

Ethics declarations

Competing interests

SH is the Chief Scientific Officer at Iterion Therapeutics. KNB has served as a consultant to Iterion Therapeutics. All other authors declare they have no conflict of interest to disclose.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birdwell, C.E., Fiskus, W., Kadia, T.M. et al. Preclinical efficacy of targeting epigenetic mechanisms in AML with 3q26 lesions and EVI1 overexpression. Leukemia 38, 545–556 (2024). https://doi.org/10.1038/s41375-023-02108-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-023-02108-3

Search

Quick links