Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

MYELODYSPLASTIC NEOPLASM

What role for somatic mutations in systemic inflammatory and autoimmune diseases associated with myelodysplastic neoplasms and chronic myelomonocytic leukemias?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Clinical spectrum of systemic inflammatory and autoimmune diseases (SIAD) associated with myelodysplastic neoplasms (MDS) and chronic myelomonocytic leukemias (CMML).
Fig. 2: Proposed pathophysiological model of MDS/CMML associated with Systemic Inflammatory and Autoimmune Diseases (SIAD), at least in the case of TET2/IDH (and possibly SRSF2) mutation.
Fig. 3: Proposed provisional therapeutic decision tree for MDS/CMML-associated SIAD.

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Mekinian A, Grignano E, Braun T, Decaux O, Liozon E, Costedoat-Chalumeau N, et al. Systemic inflammatory and autoimmune manifestations associated with myelodysplastic syndromes and chronic myelomonocytic leukaemia: a French multicentre retrospective study. Rheumatology. 2016;55:291–300.

    Article  CAS  PubMed  Google Scholar 

  2. Beck DB, Ferrada MA, Sikora KA, Ombrello AK, Collins JC, Pei W, et al. Somatic mutations in UBA1 and severe adult-onset autoinflammatory disease. N. Engl J Med. 2020;383:2628–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. McGonagle D, McDermott MF. A proposed classification of the immunological diseases. PLoS Med. 2006;3:e297.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mufti GJ, Figes A, Hamblin TJ, Oscier DG, Copplestone JA. Immunological abnormalities in myelodysplastic syndromes. I. Serum immunoglobulins and autoantibodies. Br J Haematol. 1986;63:143–7.

    Article  CAS  PubMed  Google Scholar 

  5. Komrokji RS, Kulasekararaj A, Al Ali NH, Kordasti S, Bart-Smith E, Craig BM, et al. Autoimmune diseases and myelodysplastic syndromes. Am J Hematol. 2016;91:E280–3.

    Article  PubMed  Google Scholar 

  6. Zhao L-P, Schell B, Sébert M, Kim R, Lemaire P, Boy M, et al. Prevalence of UBA1 mutations in MDS/CMML patients with systemic inflammatory and auto-immune disease. Leukemia. 2021;35:2731–3.

    Article  CAS  PubMed  Google Scholar 

  7. Georgin-Lavialle S, Terrier B, Guedon AF, Heiblig M, Comont T, Lazaro E, et al. Further characterization of clinical and laboratory features occurring in VEXAS syndrome in a large-scale analysis of multicenter case-series of 116 French patients. Br J Dermatol. 2022;186:564–74.

    Article  CAS  PubMed  Google Scholar 

  8. Barba T, Jamilloux Y, Durel C-A, Bourbon E, Mestrallet F, Sujobert P, et al. VEXAS syndrome in a woman. Rheumatology. 2021;60:e402–3.

    Article  PubMed  Google Scholar 

  9. Gurnari C, Mannion P, Pandit I, Pagliuca S, Voso MT, Maciejewski JP, et al. UBA1 Screening in Sweet Syndrome With Hematological Neoplasms Reveals a Novel Association Between VEXAS and Chronic Myelomonocytic. Leuk Hemasphere. 2022;6:e775.

    Article  CAS  Google Scholar 

  10. Hage-Sleiman M, Lalevée S, Guermouche H, Favale F, Chaquin M, Battistella M, et al. Dominance of an UBA1 mutant clone over a CALR mutant clone: from essential thrombocytemia to VEXAS. Haematologica. 2021;106:3245–8.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ferrada MA, Savic S, Cardona DO, Collins JC, Alessi H, Gutierrez-Rodrigues F, et al. Translation of cytoplasmic UBA1 contributes to VEXAS syndrome pathogenesis. Blood. 2022;140:1496–506.

    Article  CAS  PubMed  Google Scholar 

  12. Caiado F, Kovtonyuk LV, Gonullu NG, Fullin J, Boettcher S, Manz MG. Aging drives Tet2+/- clonal hematopoiesis via IL-1 signaling. Blood. 2023;14:886–903.

    Article  Google Scholar 

  13. SanMiguel JM, Eudy E, Loberg MA, Young KA, Mistry JJ, Mujica KD, et al. Distinct tumor necrosis factor alpha receptors dictate stem cell fitness versus lineage output in dnmt3a-mutant clonal hematopoiesis. Cancer Discov. 2022;12:2763–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Avagyan S, Henninger JE, Mannherz WP, Mistry M, Yoon J, Yang S, et al. Resistance to inflammation underlies enhanced fitness in clonal hematopoiesis. Science. 2021;374:768–72.

    Article  CAS  PubMed  Google Scholar 

  15. Anderson LA, Pfeiffer RM, Landgren O, Gadalla S, Berndt SI, Engels EA. Risks of myeloid malignancies in patients with autoimmune conditions. Br J Cancer. 2009;100:822–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhao L-P, Boy M, Azoulay C, Clappier E, Sébert M, Amable L, et al. Genomic landscape of MDS/CMML associated with systemic inflammatory and autoimmune disease. Leukemia. 2021;35:2720–4.

    Article  PubMed  Google Scholar 

  17. Kordasti SY, Afzali B, Lim Z, Ingram W, Hayden J, Barber L, et al. IL-17-producing CD4+ T cells, pro-inflammatory cytokines and apoptosis are increased in low risk myelodysplastic syndrome. Br J Haematol. 2009;145:64–72.

    Article  CAS  PubMed  Google Scholar 

  18. Epling-Burnette PK, Painter JS, Rollison DE, Ku E, Vendron D, Widen R, et al. Prevalence and clinical association of clonal T-cell expansions in Myelodysplastic Syndrome. Leukemia. 2007;21:659–67.

    Article  CAS  PubMed  Google Scholar 

  19. Wesner N, Drevon L, Guedon A, Fraison JB, Terrier B, Trad S, et al. Gastrointestinal Behcet’s-like disease with myelodysplastic neoplasms with trisomy 8: a French case series and literature review. Leuk Lymphoma 2019;7:1782–8.

  20. Oh Y-J, Shin D-Y, Hwang SM, Kim S-M, Im K, Park HS, et al. Mutation of ten-eleven translocation-2 is associated with increased risk of autoimmune disease in patients with myelodysplastic syndrome. Korean J Intern Med. 2020;35:457–64.

    Article  CAS  PubMed  Google Scholar 

  21. Hecker JS, Hartmann L, Rivière J, Buck MC, van der Garde M, Rothenberg-Thurley M, et al. CHIP and hips: clonal hematopoiesis is common in patients undergoing hip arthroplasty and is associated with autoimmune disease. Blood. 2021;138:1727–32.

    Article  CAS  PubMed  Google Scholar 

  22. Rossi M, Meggendorfer M, Zampini M, Tettamanti M, Riva E, Travaglino E, et al. Clinical relevance of clonal hematopoiesis in persons aged ≥80 years. Blood 2021;138:2093–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Elessa D, Zhao L-P, Daltro De Oliveira R, Maslah N, Soret-Dulphy J, Verger E, et al. Genomic landscape and clinical features of Myeloproliferative Neoplasm (MPN) Patients with Auto-Immune and Inflammatory Diseases (AID). Blood. 2021;138:1496.

    Article  Google Scholar 

  24. Quivoron C, Couronné L, Della Valle V, Lopez CK, Plo I, Wagner-Ballon O, et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human Lymphomagenesis. Cancer Cell. 2011;20:25–38.

    Article  CAS  PubMed  Google Scholar 

  25. Arends CM, Galan-Sousa J, Hoyer K, Chan W, Jäger M, Yoshida K, et al. Hematopoietic lineage distribution and evolutionary dynamics of clonal hematopoiesis. Leukemia. 2018;32:1908–19.

    Article  CAS  PubMed  Google Scholar 

  26. Fuster JJ, MacLauchlan S, Zuriaga MA, Polackal MN, Ostriker AC, Chakraborty R, et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science. 2017;355:842–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Agrawal M, Niroula A, Cunin P, McConkey M, Shkolnik V, Kim PG, et al. TET2-mutant clonal hematopoiesis and risk of gout. Blood. 2022;140:1094–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Miller PG, Qiao D, Rojas-Quintero J, Honigberg MC, Sperling AS, Gibson CJ, et al. Association of clonal hematopoiesis with chronic obstructive pulmonary disease. Blood. 2022;139:357–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jaiswal S, Natarajan P, Silver AJ, Gibson CJ, Bick AG, Shvartz E, et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N. Engl J Med. 2017;377:111–21.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yue X, Trifari S, Äijö T, Tsagaratou A, Pastor WA, Zepeda-Martínez JA, et al. Control of Foxp3 stability through modulation of TET activity. J Exp Med. 2016;213:377–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dominguez PM, Ghamlouch H, Rosikiewicz W, Kumar P, Béguelin W, Fontán L, et al. TET2 deficiency causes germinal center hyperplasia, impairs plasma cell differentiation, and promotes B-cell Lymphomagenesis. Cancer Disco. 2018;8:1632–53.

    Article  CAS  Google Scholar 

  32. Boy M, Bisio V, Zhao L-P, Guidez F, Schell B, Lereclus E, et al. Myelodysplastic Syndrome associated TET2 mutations affect NK cell function and genome methylation. Nat Commun. 2023;14:588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Waitkus MS, Diplas BH, Yan H. Biological role and therapeutic potential of IDH mutations in cancer. Cancer Cell. 2018;34:186–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee SC-W, Dvinge H, Kim E, Cho H, Micol J-B, Chung YR, et al. Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins. Nat Med. 2016;22:672–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kosmider O, Possémé C, Templé M, Corneau A, Carbone F, Duroyon E, et al. VEXAS syndrome is characterized by blood and tissues inflammasome pathway activation and monocyte dysregulation. medRxiv 2022; https://doi.org/10.1101/2022.10.12.22281005.

  36. Fraison J-B, Mekinian A, Grignano E, Kahn J-E, Arlet J-B, Decaux O, et al. Efficacy of Azacitidine in autoimmune and inflammatory disorders associated with myelodysplastic syndromes and chronic myelomonocytic leukemia. Leuk Res. 2016;43:13–17.

    Article  CAS  PubMed  Google Scholar 

  37. Mekinian A, Zhao LP, Chevret S, Desseaux K, Pascal L, Comont T, et al. A Phase II prospective trial of azacitidine in steroid-dependent or refractory systemic autoimmune/inflammatory disorders and VEXAS syndrome associated with MDS and CMML. Leukemia. 2022;36:2739–42.

    Article  PubMed  Google Scholar 

  38. McLornan DP, Khan AA, Harrison CN. Immunological consequences of JAK inhibition: friend or foe? Curr Hematol Malig Rep. 2015;10:370–9.

    Article  PubMed  Google Scholar 

  39. McLornan DP, Pope JE, Gotlib J, Harrison CN. Current and future status of JAK inhibitors. Lancet. 2021;398:803–16.

    Article  PubMed  Google Scholar 

  40. Diarra A, Duployez N, Fournier E, Preudhomme C, Coiteux V, Magro L, et al. Successful allogeneic hematopoietic stem cell transplantation in patients with VEXAS syndrome: a two-center experience. Blood Adv. 2022;6:998–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Al-Hakim A, Poulter JA, Mahmoud D, Rose AMS, Elcombe S, Lachmann H, et al. Allogeneic haematopoietic stem cell transplantation for VEXAS syndrome: UK experience. Br J Haematol. 2022;199:777–81.

    Article  PubMed  Google Scholar 

  42. Itzykson R, Kosmider O, Cluzeau T, Mansat-De Mas V, Dreyfus F, Beyne-Rauzy O, et al. Impact of TET2 mutations on response rate to azacitidine in myelodysplastic syndromes and low blast count acute myeloid leukemias. Leukemia. 2011;25:1147–52.

    Article  CAS  PubMed  Google Scholar 

  43. Lindblad KE, Goswami M, Hourigan CS, Oetjen KA. Immunological effects of hypomethylating agents. Expert Rev Hematol. 2017;10:745–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

LPZ and PF wrote the manuscript. LPZ designed the figures. All the authors critically reviewed the design and the content of the manuscript.

Corresponding author

Correspondence to Lin-Pierre Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, LP., Sébert, M., Mékinian, A. et al. What role for somatic mutations in systemic inflammatory and autoimmune diseases associated with myelodysplastic neoplasms and chronic myelomonocytic leukemias?. Leukemia 37, 1186–1190 (2023). https://doi.org/10.1038/s41375-023-01890-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-023-01890-4

This article is cited by

Search

Quick links