Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ACUTE MYELOID LEUKEMIA

Characteristics of anti-CLL1 based CAR-T therapy for children with relapsed or refractory acute myeloid leukemia: the multi-center efficacy and safety interim analysis

Abstract

C-type lectin-like molecule-1 (CLL1) is preferentially expressed on acute myeloid leukemia (AML) stem cells and AML blasts, which can be considered as AML-associated antigen. Anti-CLL1-based CAR-T cells exhibited effective tumor-killing capacity in vitro and in AML-bearing mouse model. In this report, eight children with relapsed or refractory AML (R/R-AML) were recruited for a phase 1/2 clinical trial of autologous anti-CLL1 CAR-T cell immunotherapy. The objectives of this clinical trial were to evaluate the safety and the preliminary efficacy of anti-CLL1 CAR-T cell treatment. Patients received one dose of autologous anti-CLL1 CAR-T cells after lymphodepletion conditioning. After CAR-T treatment, patients developed grade 1–2 cytokine release syndrome (CRS) but without any lethal events. 4 out of 8 patients achieved morphologic leukemia-free state (MLFS) and minimal residual disease (MRD) negativity, 1 patient with MLFS and MRD positivity, 1 patient achieved complete remission with incomplete hematologic recovery (CRi) but MRD positivity, 1 patient with partial remission (PR), and 1 patient remained at stable disease (SD) status but had CLL1-positive AML blast clearance. These results suggested that anti-CLL1-based CAR-T cell immunotherapy can be considered as a well-tolerated and effective option for treating children with R/R-AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anti-CLL1 CAR-T showed strong anti-tumor activity in pre-clinical mouse model.
Fig. 2: Anti-CLL1 CAR-T induced complete remission in AML patients.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files. Further inquiries can be directed to the corresponding authors.

References

  1. Bonaventure A, Harewood R, Stiller CA, Gatta G, Clavel J, Stefan DC, et al. Worldwide comparison of survival from childhood leukaemia for 1995-2009, by subtype, age, and sex (CONCORD-2): a population-based study of individual data for 89 828 children from 198 registries in 53 countries. Lancet Haematol. 2017;4:e202–e17.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rubnitz JE, Inaba H, Dahl G, Ribeiro RC, Bowman WP, Taub J, et al. Minimal residual disease-directed therapy for childhood acute myeloid leukaemia: results of the AML02 multicentre trial. Lancet Oncol. 2010;11:543–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rasche M, Zimmermann M, Borschel L, Bourquin JP, Dworzak M, Klingebiel T, et al. Successes and challenges in the treatment of pediatric acute myeloid leukemia: a retrospective analysis of the AML-BFM trials from 1987 to 2012. Leukemia 2018;32:2167–77.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Creutzig U, Zimmermann M, Dworzak MN, Gibson B, Tamminga R, Abrahamsson J, et al. The prognostic significance of early treatment response in pediatric relapsed acute myeloid leukemia: results of the international study Relapsed AML 2001/01. Haematologica 2014;99:1472–8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Short NJ, Rytting ME, Cortes JE. Acute myeloid leukaemia. Lancet 2018;392:593–606.

    Article  PubMed  Google Scholar 

  6. Moors I, Vandepoele K, Philippe J, Deeren D, Selleslag D, Breems D, et al. Clinical implications of measurable residual disease in AML: Review of current evidence. Crit Rev Oncol Hematol. 2019;133:142–8.

    Article  PubMed  Google Scholar 

  7. Short NJ, Konopleva M, Kadia TM, Borthakur G, Ravandi F, DiNardo CD, et al. Advances in the treatment of acute myeloid leukemia: new drugs and new challenges. Cancer Discov. 2020;10:506–25.

    Article  CAS  PubMed  Google Scholar 

  8. Karol SE, Alexander TB, Budhraja A, Pounds SB, Canavera K, Wang L, et al. Venetoclax in combination with cytarabine with or without idarubicin in children with relapsed or refractory acute myeloid leukaemia: a phase 1, dose-escalation study. Lancet Oncol 2020;21:551–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Niktoreh N, Lerius B, Zimmermann M, Gruhn B, Escherich G, Bourquin JP, et al. Gemtuzumab ozogamicin in children with relapsed or refractory acute myeloid leukemia: a report by Berlin-Frankfurt-Munster study group. Haematologica 2019;104:120–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. van Eijkelenburg NKA, Rasche M, Ghazaly E, Dworzak MN, Klingebiel T, Rossig C, et al. Clofarabine, high-dose cytarabine and liposomal daunorubicin in pediatric relapsed/refractory acute myeloid leukemia: a phase IB study. Haematologica 2018;103:1484–92.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Raje N, Berdeja J, Lin Y, Siegel D, Jagannath S, Madduri D, et al. Anti-BCMA CAR T-Cell Therapy bb2121 in relapsed or refractory multiple myeloma. N. Engl J Med. 2019;380:1726–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schuster SJ, Bishop MR, Tam CS, Waller EK, Borchmann P, McGuirk JP, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-Cell Lymphoma. N. Engl J Med. 2019;380:45–56.

    Article  CAS  PubMed  Google Scholar 

  13. Ying Z, Huang XF, Xiang X, Liu Y, Kang X, Song Y, et al. A safe and potent anti-CD19 CAR T cell therapy. Nat Med 2019;25:947–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang Z, Wu Z, Liu Y, Han W. New development in CAR-T cell therapy. J Hematol Oncol. 2017;10:53.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in children and young adults with B-Cell lymphoblastic leukemia. N. Engl J Med. 2018;378:439–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Park JH, Riviere I, Gonen M, Wang X, Senechal B, Curran KJ, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N. Engl J Med. 2018;378:449–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shah NN, Fry TJ. Mechanisms of resistance to CAR T cell therapy. Nat Rev Clin Oncol. 2019;16:372–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. van Rhenen A, van Dongen GA, Kelder A, Rombouts EJ, Feller N, Moshaver B, et al. The novel AML stem cell associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells. Blood 2007;110:2659–66.

    Article  PubMed  Google Scholar 

  19. Leong SR, Sukumaran S, Hristopoulos M, Totpal K, Stainton S, Lu E, et al. An anti-CD3/anti-CLL-1 bispecific antibody for the treatment of acute myeloid leukemia. Blood 2017;129:609–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jiang YP, Liu BY, Zheng Q, Panuganti S, Chen R, Zhu J, et al. CLT030, a leukemic stem cell-targeting CLL1 antibody-drug conjugate for treatment of acute myeloid leukemia. Blood Adv. 2018;2:1738–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lin TY, Zhu Y, Li Y, Zhang H, Ma AH, Long Q, et al. Daunorubicin-containing CLL1-targeting nanomicelles have anti-leukemia stem cell activity in acute myeloid leukemia. Nanomedicine 2019;20:102004.

    Article  CAS  PubMed  Google Scholar 

  22. Tashiro H, Sauer T, Shum T, Parikh K, Mamonkin M, Omer B, et al. Treatment of acute myeloid leukemia with T cells expressing chimeric antigen receptors directed to C-type Lectin-like Molecule 1. Mol Ther. 2017;25:2202–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang J, Chen S, Xiao W, Li W, Wang L, Yang S, et al. CAR-T cells targeting CLL-1 as an approach to treat acute myeloid leukemia. J Hematol Oncol. 2018;11:7.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhang H, Wang P, Li Z, He Y, Gan W, Jiang H. Anti-CLL1 chimeric antigen receptor T-Cell therapy in children with relapsed/refractory acute myeloid leukemia. Clin Cancer Res. 2021;27:3549–55.

    Article  CAS  PubMed  Google Scholar 

  25. Liu F, Cao Y, Pinz KG, Ma Y, Wada M, Chen KH, et al. First-in-Human CLL1-CD33 Compound CAR T cell therapy induces complete remission in patients with refractory acute myeloid leukemia: update on Phase 1 clinical trial. Am Soc Hematol Annu Meet: Blood. 2018;132:901.

    Google Scholar 

  26. Zhang H, Gan WT, Hao WG, Wang PF, Li ZY, Chang LJ. Successful Anti-CLL1 CAR T-cell therapy in secondary acute myeloid leukemia. Front Oncol. 2020;10:685.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dohner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Buchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017;129:424–47.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mahadeo KM, Khazal SJ, Abdel-Azim H, Fitzgerald JC, Taraseviciute A, Bollard CM, et al. Management guidelines for paediatric patients receiving chimeric antigen receptor T cell therapy. Nat Rev Clin Oncol. 2019;16:45–63.

    Article  CAS  PubMed  Google Scholar 

  29. Neelapu SS, Tummala S, Kebriaei P, Wierda W, Gutierrez C, Locke FL, et al. Chimeric antigen receptor T-cell therapy - assessment and management of toxicities. Nat Rev Clin Oncol. 2018;15:47–62.

    Article  CAS  PubMed  Google Scholar 

  30. Hofmann S, Schubert ML, Wang L, He B, Neuber B, Dreger P, et al. Chimeric Antigen Receptor (CAR) T Cell Therapy in Acute Myeloid Leukemia (AML). J Clin Med. 2019;8:200.

    Article  CAS  PubMed Central  Google Scholar 

  31. Mardiana S, Gill S. CAR T cells for acute myeloid leukemia: state of the art and future directions. Front Oncol. 2020;10:697.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sallman DA, Brayer J, Sagatys EM, Lonez C, Breman E, Agaugue S, et al. NKG2D-based chimeric antigen receptor therapy induced remission in a relapsed/refractory acute myeloid leukemia patient. Haematologica 2018;103:e424–e6.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Budde L, Song JY, Kim Y, Blanchard S, Wagner J, Stein AS, et al. Remissions of acute myeloid leukemia and blastic plasmacytoid dendritic cell neoplasm following treatment with CD123-specific CAR T cells: a first-in-human clinical trial. Am Soc Hematol Annu Meet: Blood. 2017;130:811.

    Google Scholar 

  34. Liu F, Zhang H, Sun L, Li Y, Zhang S, He G, et al. First-in-human CLL1-CD33 compound CAR (cCAR) T cell therapy in relapsed and refractory acute myeloid leukemia. European Hematology Association Meeting; 06/12/202020. S149.

  35. Rubin DB, Danish HH, Ali AB, Li K, LaRose S, Monk AD, et al. Neurological toxicities associated with chimeric antigen receptor T-cell therapy. Brain 2019;142:1334–48.

    Article  PubMed  Google Scholar 

  36. Belin C, Devic P, Ayrignac X, Dos Santos A, Paix A, Sirven-Villaros L, et al. Description of neurotoxicity in a series of patients treated with CAR T-cell therapy. Sci Rep. 2020;10:18997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Petrov JC, Wada M, Pinz KG, Yan LE, Chen KH, Shuai X, et al. Compound CAR T-cells as a double-pronged approach for treating acute myeloid leukemia. Leukemia 2018;32:1317–26.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ma H, Padmanabhan IS, Parmar S, Gong Y. Targeting CLL-1 for acute myeloid leukemia therapy. J Hematol Oncol. 2019;12:41.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang J, Hu Y, Huang H. Acute lymphoblastic leukemia relapse after CD19-targeted chimeric antigen receptor T cell therapy. J Leukoc Biol. 2017;102:1347–56.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang LN, Song Y, Liu D. CD19 CAR-T cell therapy for relapsed/refractory acute lymphoblastic leukemia: factors affecting toxicities and long-term efficacies. J Hematol Oncol. 2018;11:41.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Pan J, Yang JF, Deng BP, Zhao XJ, Zhang X, Lin YH, et al. High efficacy and safety of low-dose CD19-directed CAR-T cell therapy in 51 refractory or relapsed B acute lymphoblastic leukemia patients. Leukemia 2017;31:2587–93.

    Article  CAS  PubMed  Google Scholar 

  42. Hay KA, Gauthier J, Hirayama AV, Voutsinas JM, Wu Q, Li D, et al. Factors associated with durable EFS in adult B-cell ALL patients achieving MRD-negative CR after CD19 CAR T-cell therapy. Blood 2019;133:1652–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ma Y, Zhang S, Fang H, Yu K, Jiang S. A phase I study of CAR-T bridging HSCT in patients with acute CD19(+) relapse/refractory B-cell leukemia. Oncol Lett. 2020;20:20.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Jin X, Zhang M, Sun R, Lyu H, Xiao X, Zhang X, et al. First-in-human phase I study of CLL-1 CAR-T cells in adults with relapsed/refractory acute myeloid leukemia. J Hematol Oncol. 2022;15:88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank all the patients and their parents for their participation. This work was sponsored by Natural Science Foundation of Xinjiang (NO.2021D01C351), and supported by Guangzhou Science & Technology Project (202206010141), and partially funded by research funds from St. Baldrick’s Foundation International Scholar (581580), Guangzhou Women and Children’s Medical Center Internal Program (IP-2018-001), and Pearl River S&T Nova Program of Guangzhou (201906010056).

Funding

This work was sponsored by Natural Science Foundation of Xinjiang (NO.2021D01C351), and supported by Guangzhou Science & Technology Project (202206010141), and partially funded by research funds from St. Baldrick’s Foundation International Scholar (581580), Guangzhou Women and Children’s Medical Center Internal Program (IP-2018-001), and Pearl River S&T Nova Program of Guangzhou (201906010056). This work was also partially supported by grant from National Natural Science Foundation of China (82170152).

Author information

Authors and Affiliations

Authors

Contributions

The study was conceived by HZ and CL, designed by HZ, CL, and ML, supervised by HZ, CL, and ML. HZ, CB, ZP, GL and CL performed the research. HZ, CB, ZP, YH, ZH, and KP recruited the patients and collected clinical data. Data was conducted and interpreted by HZ, CB, ZP, GL, ZZ, WD, ML and CL. HZ, CL, YZ and ML wrote the manuscript. All authors approved the final version for publication.

Corresponding authors

Correspondence to Min Luo or Chunfu Li.

Ethics declarations

Competing interests

GL, ZZ, WD, YZ and ML are employees of Guangzhou Bio-Gene Technology Co., Ltd., who have potential interest, while other authors have nothing to disclose.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Bu, C., Peng, Z. et al. Characteristics of anti-CLL1 based CAR-T therapy for children with relapsed or refractory acute myeloid leukemia: the multi-center efficacy and safety interim analysis. Leukemia 36, 2596–2604 (2022). https://doi.org/10.1038/s41375-022-01703-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-022-01703-0

This article is cited by

Search

Quick links