Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CHRONIC MYELOPROLIFERATIVE NEOPLASMS

Genetic ablation of Pim1 or pharmacologic inhibition with TP-3654 ameliorates myelofibrosis in murine models

Abstract

Myelofibrosis (MF) is the deadliest form of myeloproliferative neoplasm (MPN). The JAK inhibitor Ruxolitinib can reduce constitutional symptoms but it does not substantially improve bone marrow fibrosis. Pim1 expression is significantly elevated in MPN/MF hematopoietic progenitors. Here, we show that genetic ablation of Pim1 blocked the development of myelofibrosis induced by Jak2V617F and MPLW515L. Pharmacologic inhibition of Pim1 with a second-generation Pim kinase inhibitor TP-3654 significantly reduced leukocytosis and splenomegaly, and attenuated bone marrow fibrosis in Jak2V617F and MPLW515L mouse models of MF. Combined treatment of TP-3654 and Ruxolitinib resulted in greater reduction of spleen size, normalization of blood leukocyte counts and abrogation of bone marrow fibrosis in murine models of MF. TP-3654 treatment also preferentially inhibited Jak2V617F mutant hematopoietic progenitors in mice. Mechanistically, we show that TP-3654 treatment significantly inhibits mTORC1, MYC and TGF-β signaling in Jak2V617F mutant hematopoietic cells and diminishes the expression of fibrotic markers in the bone marrow. Collectively, our results suggest that Pim1 plays an important role in the pathogenesis of MF, and inhibition of Pim1 with TP-3654 might be useful for treatment of MF.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Deletion of Pim1 blocks the development of myelofibrosis in Jak2V617F mouse model.
Fig. 2: Genetic deletion of Pim1 inhibits myelofibrosis in MPLW515L mouse model of MF.
Fig. 3: Pim inhibitor TP-3654 alone or in combination with Ruxolitinib significantly inhibits hematopoietic cells expressing MPN-associated mutants.
Fig. 4: In vivo administration of TP-3654 alone or in combination with Ruxolitinib ameliorates myelofibrosis in Jak2V617F murine model of MF.
Fig. 5: In vivo administration of TP-3654 alone or in combination with Ruxolitinib improves established BM fibrosis in Jak2V617F mouse model.
Fig. 6: TP-3654 alone or in combination with Ruxolitinib treatment preferentially inhibits Jak2V617F mutant hematopoietic progenitors.
Fig. 7: Inhibition of Pim1 by TP-3654 diminishes myelofibrosis in MPLW515L mouse model of MF.
Fig. 8: Suppression of Pim1 activity alters gene expression and cell signaling in MPN cells and attenuates the expression of fibrotic markers.

Similar content being viewed by others

References

  1. Cervantes F, Dupriez B, Pereira A, Passamonti F, Reilly JT, Morra E, et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood 2009;113:2895–901.

    Article  CAS  PubMed  Google Scholar 

  2. Gangat N, Caramazza D, Vaidya R, George G, Begna K, Schwager S, et al. DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol. 2011;29:392–7.

    Article  PubMed  Google Scholar 

  3. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C, et al. A unique clonal JAK2 mutation leading to constitutive signaling causes polycythemia vera. Nature 2005;434:1144–8.

    Article  CAS  PubMed  Google Scholar 

  4. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005;365:1054–61.

    Article  CAS  PubMed  Google Scholar 

  5. Levine RL, Wadleigh M, cools J, Ebert BL, Wernig G, Huntly BJP, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7:387–97.

    Article  CAS  PubMed  Google Scholar 

  6. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N. Eng J Med. 2005;352:1779–90.

    Article  CAS  Google Scholar 

  7. Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3:e270.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pardanani AD, Levine RL, Lasho T, Pikman Y, Mesa RA, Wadleigh M, et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 2006;108:3472–6.

    Article  CAS  PubMed  Google Scholar 

  9. Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N. Engl J Med. 2013;369:2391–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N. Engl J Med. 2013;369:2379–90.

    Article  CAS  PubMed  Google Scholar 

  11. Vainchenker W, Kralovics R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood 2017;129:667–79.

    Article  CAS  PubMed  Google Scholar 

  12. Harrison C, Kiladjian JJ, Al-Ali HK, Gisslinger H, Waltzman R, Stalbovskaya V, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N. Engl J Med. 2012;366:787–98.

    Article  CAS  PubMed  Google Scholar 

  13. Verstovsek S, Mesa R, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N. Engl J Med. 2012;366:799–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pardanani A, Tefferi A. Definition and management of ruxolitinib treatment failure in myelofibrosis. Blood Cancer J. 2014;4:e268.

  15. Harrison CN, Schaap N, Vannucchi AM, Kiladjian JJ, Tiu RV, Zachee P, et al. Janus kinase-2 inhibitor fedratinib in patients with myelofibrosis previously treated with ruxolitinib (JAKARTA-2): a single-arm, open-label, non-randomised, phase 2, multicentre study. Lancet Haematol. 2017;4:e317–e324.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mullally A, Hood J, Harrison C, Mesa R. Fedratinib in myelofibrosis. Blood Adv 2020;4:1792–1800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Harrison CN, Vannucchi AM, Kiladjian JJ, Al-Ali HK, Gisslinger H, Knoops L, et al. Long-term findings from COMFORT-II, a phase 3 study of ruxolitinib vs best available therapy for myelofibrosis. Leukemia 2016;30:1701–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nawijn MC, Alendar A, Berns A. For better or for worse: the role of Pim oncogenes in tumorigenesis. Nat Rev Cancer. 2011;11:23–34.

    Article  CAS  PubMed  Google Scholar 

  19. Brault L, Gasser C, Bracher F, Huber K, Knapp S, Schwaller J. PIM serine/threonine kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers. Haematologica 2010;95:1004–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Green AS, Maciel TT, Hospital MA, Yin C, Mazed F, Townsend EC, et al. Pim kinases modulate resistance to FLT3 tyrosine kinase inhibitors in FLT3-ITD acute myeloid leukemia. Sci Adv. 2015;8:e1500221.

    Article  Google Scholar 

  21. Sung PJ, Sugita M, Koblish H, Perl AE, Carroll M. Hematopoietic cytokines mediate resistance to targeted therapy in FLT3-ITD acute myeloid leukemia. Blood Adv. 2019;3:1061–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen LS, Redkar S, Bearss D, Wierda WG, Gandhi V. Pim kinase inhibitor, SGI-1776, induces apoptosis in chronic lymphocytic leukemia cells. Blood. 2009;114:4150–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Keeton EK, McEachern K, Dillman KS, Palakurthi S, Cao Y, Grondine MR, et al. AZD1208, a potent and selective pan-Pim kinase inhibitor, demonstrates efficacy in preclinical models of acute myeloid leukemia. Blood. 2014;123:905–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Foulks JM, Carpenter K, Luo B, Xu Y, Senina A, Nix R, et al. A small-molecule inhibitor of PIM kinases as a potential treatment for urothelial carcinomas. Neoplasia 2014;16:403–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Burger MT, Nishiguchi G, Han W, Lan J, Simmons R, Atallah G, et al. Identification of N-(4-((1R,3S,5S)−3-Amino-5-methylcyclohexyl)pyridin-3-yl)−6-(2,6-difluorophenyl)−5-fluoropicolinamide (PIM447), a Potent and Selective Proviral Insertion Site of Moloney Murine Leukemia (PIM) 1, 2, and 3 Kinase Inhibitor in Clinical Trials for Hematological Malignancies. J Med Chem 2015;58:8373–86.

    Article  CAS  PubMed  Google Scholar 

  26. Cortes J, Tamura K, DeAngelo DJ, de Bono J, Lorente D, Minden M, et al. Phase I studies of AZD1208, a proviral integration Moloney virus kinase inhibitor in solid and haematological cancers. Br J Cancer. 2018;118:1425–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Neubauer H, Cumano A, Müller M, Wu H, Huffstadt U, Pfeffer K. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 1998;93:397–409.

    Article  CAS  PubMed  Google Scholar 

  28. Akada H, Akada S, Hutchison RE, Sakamoto K, Wagner KU, Mohi G. Critical role of jak2 in the maintenance and function of adult hematopoietic stem cells. Stem Cells. 2014;32:1878–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mikkers H, Nawijn M, Allen J, Brouwers C, Verhoeven E, Jonkers J, et al. Mice deficient for all PIM kinases display reduced body size and impaired responses to hematopoietic growth factors. Mol Cell Biol. 2004;24:6104–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Akada H, Yan D, Zou H, Fiering S, Hutchison RE, Mohi MG. Conditional expression of heterozygous or homozygous Jak2V617F from its endogenous promoter induces a polycythemia vera-like disease. Blood 2010;115:3589–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kühn R, Schwenk F, Aguet M, Rajewsky K. Inducible gene targeting in mice. Science 1995;269:1427–9.

    Article  PubMed  Google Scholar 

  32. Akada H, Akada S, Hutchison RE, Mohi G. Loss of wild-type Jak2 allele enhances myeloid cell expansion and accelerates myelofibrosis in Jak2V617F knock-in mice. Leukemia. 2014;28:1627–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Koppikar P, Abdel-Wahab O, Hedvat C, Marubayashi S, Patel J, Goel A, et al. Efficacy of the JAK2 inhibitor INCB16562 in a murine model of MPLW515L-induced thrombocytosis and myelofibrosis. Blood 2010;115:2919–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yue L, Bartenstein M, Zhao W, Ho WT, Han Y, Murdun C, et al. Efficacy of ALK5 inhibition in myelofibrosis. JCI Insight. 2017;2:e90932.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chagraoui H, Komura E, Tulliez M, Giraudier S, Vainchenker W, Wendling F. Prominent role of TGF-beta 1 in thrombopoietin-induced myelofibrosis in mice. Blood 2002;100:3495–503.

    Article  CAS  PubMed  Google Scholar 

  37. Zingariello M, Martelli F, Ciaffoni F, Masiello F, Ghinassi B, D’Amore E, et al. Characterization of the TGF-β1 signaling abnormalities in the Gata1low mouse model of myelofibrosis. Blood 2013;121:3345–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dutta A, Hutchison RE, Mohi G. Hmga2 promotes the development of myelofibrosis in Jak2 V617F knockin mice by enhancing TGF-β1 and Cxcl12 pathways. Blood 2017;130:920–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dutta A, Nath D, Yang Y, Le BT, Mohi G. CDK6 is a therapeutic target in myelofibrosis. Cancer Res 2021;81:4332–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Frangogiannis N. Transforming growth factor-β in tissue fibrosis. J Exp Med. 2020;217:e20190103.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Batlle E, Massagué J. Transforming growth factor-β signaling in immunity and cancer. Immunity 2019;50:924–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mazzacurati L, Collins RJ, Pandey G, Lambert-Showers QT, Amin NE, Zhang L, et al. The pan-PIM inhibitor INCB053914 displays potent synergy in combination with ruxolitinib in models of MPN. Blood Adv. 2019;3:3503–14.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rampal RK, Pinzon-Ortiz M, Somasundara AVH, Durham B, Koche R, Spitzer B, et al. Therapeutic efficacy of combined JAK1/2, Pan-PIM, and CDK4/6 inhibition in myeloproliferative neoplasms. Clin Cancer Res. 2021;27(Jun):3456–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu GY, Sabatini DM. mTOR signaling in growth control and disease. Cell 2012;21:183–203.

    Google Scholar 

  45. Aho TL, Sandholm J, Peltola KJ, Mankonen HP, Lilly M, Koskinen PJ. Pim-1 kinase promotes inactivation of the pro-apoptotic Bad protein by phosphorylating it on the Ser112 gatekeeper site. FEBS Lett. 2004;571:43–49.

    Article  CAS  PubMed  Google Scholar 

  46. Wen QJ, Yang Q, Goldenson B, Malinge S, Lasho T, Schneider RK, et al. Targeting megakaryocytic-induced fibrosis in myeloproliferative neoplasms by AURKA inhibition. Nat Med. 2015;21:1473–80.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Henderson NC, Rieder F, Wynn TA. Fibrosis: from mechanisms to medicines. Nature. 2020;587:555–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tefferi A. Pathogenesis of myelofibrosis with myeloid metaplasia. J Clin Oncol. 2005;23:8520–30.

    Article  CAS  PubMed  Google Scholar 

  49. Zhao B, Liu L, Mao J, Zhang Z, Wang Q, Li Q. PIM1 mediates epithelial-mesenchymal transition by targeting Smads and c-Myc in the nucleus and potentiates clear-cell renal-cell carcinoma oncogenesis. Cell Death Dis 2018;9:307.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Garrido-Laguna I, Dillon PM, Anthony SP, Janat-Amsbury M, Ashenbramer N, Warner SL, et al. A phase I, first-in-human, open-label, dose-escalation, safety, pharmacokinetic, and pharmacodynamic study of oral TP-3654 administered daily for 28 days to patients with advanced solid tumors. J Clin Oncol. 2020;8:586.

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Anton Berns of Netherlands Cancer Institute for Pim1 and Pim2 knockout mice. We also thank the Flow Cytometry and Microscopy Core Facilities and the Biorepository and Tissue Research Facility (BTRF) of the University of Virginia for assistance with FACS sorting, confocal microscopy and MPN specimen procurement and processing.

Funding

Flow Cytometry and Microscopy Cores are supported by the UVA Cancer Center through P30CA044578 grant. This work was supported in parts by grants from the Department of Defense (W81XWH1910280) and the National Institutes of Health (R01 HL095685, R01 HL149893) awarded to GM.

Author information

Authors and Affiliations

Authors

Contributions

AD performed research, analyzed data and wrote the manuscript; DN performed research and analyzed data; YY performed research; BTL performed data analysis; MFR performed research; PF performed research; ZW, RH, and WT performed RNA-seq data analysis; MS performed research; REH performed histopathologic analysis; JMF and SLW provided TP-3654 and suggestions for research design; CZ supervised RNA-seq data analysis; GM designed the research, analyzed data and wrote the manuscript.

Corresponding author

Correspondence to Golam Mohi.

Ethics declarations

Competing interests

G.M. received research funding from Tolero Pharmaceutical Inc. J.M.F. and S.L.W. are employees and stakeholders of Sumitomo Dainippon Pharma Oncology, Inc. (formerly known as Tolero Pharmaceuticals, Inc). The remaining authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, A., Nath, D., Yang, Y. et al. Genetic ablation of Pim1 or pharmacologic inhibition with TP-3654 ameliorates myelofibrosis in murine models. Leukemia 36, 746–759 (2022). https://doi.org/10.1038/s41375-021-01464-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-021-01464-2

This article is cited by

Search

Quick links