Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chronic myeloproliferative neoplasms

Hypoxia-inducible factor 1 (HIF-1) is a new therapeutic target in JAK2V617F-positive myeloproliferative neoplasms

Abstract

Classical Philadelphia chromosome-negative myeloproliferative neoplasms (MPN) are a heterogeneous group of hematopoietic malignancies including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). The JAK2V617F mutation plays a central role in these disorders and can be found in 90% of PV and ~50–60% of ET and PMF. Hypoxia-inducible factor 1 (HIF-1) is a master transcriptional regulator of the response to decreased oxygen levels. We demonstrate the impact of pharmacological inhibition and shRNA-mediated knockdown (KD) of HIF-1α in JAK2V617F-positive cells. Inhibition of HIF-1 binding to hypoxia response elements (HREs) with echinomycin, verified by ChIP, impaired growth and survival by inducing apoptosis and cell cycle arrest in Jak2V617F-positive 32D cells, but not Jak2WT controls. Echinomycin selectively abrogated clonogenic growth of JAK2V617F cells and decreased growth, survival, and colony formation of bone marrow and peripheral blood mononuclear cells and iPS cell-derived progenitor cells from JAK2V617F-positive patients, while cells from healthy donors were unaffected. We identified HIF-1 target genes involved in the Warburg effect as a possible underlying mechanism, with increased expression of Pdk1, Glut1, and others. That was underlined by transcriptome analysis of primary patient samples. Collectively, our data show that HIF-1 is a new potential therapeutic target in JAK2V617F-positive MPN.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Spivak JL. The chronic myeloproliferative disorders: clonality and clinical heterogeneity. Semin Hematol. 2004;41 2 Suppl 3:1–5.

    Article  CAS  PubMed  Google Scholar 

  2. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352:1779–90.

    Article  CAS  PubMed  Google Scholar 

  3. Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3:e270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369:2379–90.

    Article  CAS  PubMed  Google Scholar 

  5. Tefferi A, Lasho TL, Gilliland G. JAK2 mutations in myeloproliferative disorders. N Engl J Med. 2005;353:1416–7. author reply 1416–7.

    Article  CAS  PubMed  Google Scholar 

  6. Bose P, Verstovsek S. JAK2 inhibitors for myeloproliferative neoplasms: what is next? Blood. 2017;130:115–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mesa RA, Vannucchi AM, Mead A, Egyed M, Szoke A, Suvorov A, et al. Pacritinib versus best available therapy for the treatment of myelofibrosis irrespective of baseline cytopenias (PERSIST-1): an international, randomised, phase 3 trial. Lancet Haematol. 2017;4:e225–36.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Vainchenker W, Leroy E, Gilles L, Marty C, Plo I, Constantinescu SN. JAK inhibitors for the treatment of myeloproliferative neoplasms and other disorders. F1000Res. 2018;7:82.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Graham AM, Presnell JS. Hypoxia Inducible Factor (HIF) transcription factor family expansion, diversification, divergence and selection in eukaryotes. PLoS ONE. 2017;12:e0179545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kaelin WG Jr., Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell. 2008;30:393–402.

    Article  CAS  PubMed  Google Scholar 

  11. Gezer D, Vukovic M, Soga T, Pollard PJ, Kranc KR. Concise review: genetic dissection of hypoxia signaling pathways in normal and leukemic stem cells. Stem Cells. 2014;32:1390–7.

    Article  CAS  PubMed  Google Scholar 

  12. Nombela-Arrieta C, Pivarnik G, Winkel B, Canty KJ, Mahoney JE, Park S-Y, et al. Quantitative imaging of hematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol. 2013;15:533–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Takubo K, Goda N, Yamada W, Iriuchishima H, Ikeda E, Kubota Y, et al. Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell. 2010;7:391–402.

    Article  CAS  PubMed  Google Scholar 

  14. Vukovic M, Sepulveda C, Subramani C, Guitart AV, Mohr J, Allen L, et al. Adult hematopoietic stem cells lacking Hif-1alpha self-renew normally. Blood. 2016;127:2841–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Guitart AV, Subramani C, Armesilla-Diaz A, Smith G, Sepulveda C, Gezer D, et al. Hif-2α is not essential for cell-autonomous hematopoietic stem cell maintenance. Blood. 2013;122:1741–5.

  16. Zhou H-S, Carter BZ, Andreeff M. Bone marrow niche-mediated survival of leukemia stem cells in acute myeloid leukemia: Yin and Yang. Cancer Biol Med. 2016;13:248–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wellmann S, Guschmann M, Griethe W, Eckert C, Stackelberg A, Lottaz C, et al. Activation of the HIF pathway in childhood ALL, prognostic implications of VEGF. Leukemia. 2004;18:926–33.

    Article  CAS  PubMed  Google Scholar 

  18. Wang Y, Liu Y, Malek SN, Zheng P, Liu Y. Targeting HIF1α eliminates cancer stem cells in hematological malignancies. Cell Stem Cell. 2011;8:399–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang H, Li H, Xi HS, Li S. HIF1α is required for survival maintenance of chronic myeloid leukemia stem cells. Blood. 2012;119:2595–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ang SO, Chen H, Hirota K, Gordeuk VR, Jelinek J, Guan Y, et al. Disruption of oxygen homeostasis underlies congenital Chuvash polycythemia. Nat Genet. 2002;32:614–21.

    Article  CAS  PubMed  Google Scholar 

  21. Percy MJ, Furlow PW, Lucas GS, Li X, Lappin TR, McMullin MF, et al. A gain-of-function mutation in the HIF2A gene in familial erythrocytosis. N Engl J Med. 2008;358:162–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gardie B, Percy MJ, Hoogewijs D, Chowdhury R, Bento C, Arsenault PR, et al. The role of PHD2 mutations in the pathogenesis of erythrocytosis. Hypoxia. 2014;2:71–90.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Čokić VP, Mossuz P, Han J, Socoro N, Beleslin-Čokić BB, Mitrović O, et al. Microarray and proteomic analyses of myeloproliferative neoplasms with a highlight on the mTOR signaling pathway. PLoS ONE. 2015;10:1–23.

    Article  CAS  Google Scholar 

  24. Harada H, Itasaka S, Kizaka-Kondoh S, Shibuya K, Morinibu A, Shinomiya K, et al. The Akt/mTOR pathway assures the synthesis of HIF-1alpha protein in a glucose- and reoxygenation-dependent manner in irradiated tumors. J Biol Chem. 2009;284:5332–42.

    Article  CAS  PubMed  Google Scholar 

  25. Marty C, Lacout C, Droin N, Le Couédic JP, Ribrag V, Solary E, et al. A role for reactive oxygen species in JAK2 V617F myeloproliferative neoplasm progression. Leukemia. 2013;27:2187–95.

    Article  CAS  PubMed  Google Scholar 

  26. Vener C, Novembrino C, Bamonti Catena F, Fracchiolla NS, Gianelli U, Savi F, et al. Oxidative stress is increased in primary and post-polycythemia vera myelofibrosis. Exp Hematol. 2010;38:1058–65.

    Article  CAS  PubMed  Google Scholar 

  27. Jung SN, Yang WK, Kim J, Kim HS, Kim EJ, Yun H, et al. Reactive oxygen species stabilize hypoxia-inducible factor-1 alpha protein and stimulate transcriptional activity via AMP-activated protein kinase in DU145 human prostate cancer cells. Carcinogenesis. 2008;29:713–21.

    Article  CAS  PubMed  Google Scholar 

  28. Xu Q, Liu GM, Wang FY, Zhang LJ, Liang WT, Cheng ZY. The effect of ruxolitinib on the expression of VEGF and HIF-1 alpha in leukemia HEL cells. Sichuan Da Xue Xue Bao Yi Xue Ban. 2016;47:669–73.

    PubMed  Google Scholar 

  29. Mitsumori T, Nozaki Y, Kawashima I, Yamamoto T, Shobu Y, Nakajima K, et al. Hypoxia inhibits JAK2V617F activation via suppression of SHP-2 function in myeloproliferative neoplasm cells. Exp Hematol. 2014;42:783–92 e781.

    Article  CAS  PubMed  Google Scholar 

  30. Gerald D, Berra E, Frapart YM, Chan DA, Giaccia AJ, Mansuy D, et al. JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell. 2004;118:781–94.

    Article  CAS  PubMed  Google Scholar 

  31. Gold R, Kappos L, Arnold DL, Bar-Or A, Giovannoni G, Selmaj K, et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med. 2012;367:1098–107.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang J, Su L, Ye Q, Zhang S, Kung H, Jiang F, et al. Discovery of a novel Nrf2 inhibitor that induces apoptosis of human acute myeloid leukemia cells. Oncotarget. 2017;8:7625–36.

    PubMed  Google Scholar 

  33. Yamaguchi Y, Kanzaki H, Katsumata Y, Itohiya K, Fukaya S, Miyamoto Y, et al. Dimethyl fumarate inhibits osteoclasts via attenuation of reactive oxygen species signalling by augmented antioxidation. J Cell Mol Med. 2018;22:1138–47.

    CAS  PubMed  Google Scholar 

  34. Kong D, Park EJ, Stephen AG, Calvani M, Cardellina JH, Monks A, et al. Echinomycin, a small-molecule inhibitor of hypoxia-inducible factor-1 DNA-binding activity. Cancer Res. 2005;65:9047–55.

    Article  CAS  PubMed  Google Scholar 

  35. Machado-Neto JA, Traina F. Reactive oxygen species overload promotes apoptosis in JAK2V617F-positive cell lines. Rev Bras Hematol Hemoter. 2016;38:179–81.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ahn JS, Li J, Chen E, Kent DG, Park HJ, Green aR. JAK2V617F mediates resistance to DNA damage-induced apoptosis by modulating FOXO3A localization and Bcl-xL deamidation. Oncogene. 2016;35:2235–46.

    Article  CAS  PubMed  Google Scholar 

  37. Chen E, Beer PA, Godfrey AL, Ortmann CA, Li J, Costa-Pereira AP, et al. Distinct clinical phenotypes associated with JAK2V617F reflect differential STAT1 signaling. Cancer Cell. 2010;18:524–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Oku S, Takenaka K, Kuriyama T, Shide K, Kumano T, Kikushige Y, et al. JAK2 V617F uses distinct signalling pathways to induce cell proliferation and neutrophil activation. Br J Haematol. 2010;150:334–44.

    Article  CAS  PubMed  Google Scholar 

  39. Menrad H, Werno C, Schmid T, Copanaki E, Deller T, Dehne N, et al. Roles of hypoxia-inducible factor-1α (HIF-1α) versus HIF-2α in the survival of hepatocellular tumor spheroids. Hepatology. 2010;51:2183–92.

    Article  CAS  PubMed  Google Scholar 

  40. Schulz K, Milke L, Rübsamen D, Menrad H, Schmid T, Brüne B. HIF-1α protein is upregulated in HIF-2α depleted cells via enhanced translation. FEBS Lett. 2012;586:1652–7.

    Article  CAS  PubMed  Google Scholar 

  41. Scheuermann TH, Li Q, Ma H-W, Key J, Zhang L, Chen R, et al. Allosteric inhibition of hypoxia inducible factor-2 with small molecules. Nat Chem Biol. 2013;9:271–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nagel R, Semenova EA, Berns A. Drugging the addict: non-oncogene addiction as a target for cancer therapy. EMBO Rep. 2016;17:1516–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Peng G, Liu Y. Hypoxia-inducible factors in cancer stem cells and inflammation. Trends Pharmacol Sci. 2015;36:374–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lu L, Chen Y, Zhu Y. The molecular basis of targeting PFKFB3 as a therapeutic strategy against cancer. Oncotarget. 2017;8:62793–802.

    PubMed  PubMed Central  Google Scholar 

  45. Amati B, Land H. Myc-Max-Mad: a transcription factor network controlling cell cycle progression, differentiation and death. Curr Opin Genet Dev. 1994;4:102–8.

    Article  CAS  PubMed  Google Scholar 

  46. Ruiz A, Dror E, Handschin C, Furrer R, Perez-Schindler J, Bachmann C, et al. Over-expression of a retinol dehydrogenase (SRP35/DHRS7C) in skeletal muscle activates mTORC2, enhances glucose metabolism and muscle performance. Sci Rep. 2018;8:636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kucharzewska P, Christianson HC, Belting M. Global profiling of metabolic adaptation to hypoxic stress in human glioblastoma cells. PLoS ONE. 2015;10:e0116740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Iommarini L, Porcelli AM, Gasparre G, Kurelac I. Non-canonical mechanisms regulating hypoxia-inducible factor 1 alpha in cancer. Front Oncol. 2017;7:286.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Masoud GN, Li W. HIF-1?? pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B. 2015;5:378–89.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Marty C, Lacout C, Martin A, Hasan S, Jacquot S, Birling MC, et al. Myeloproliferative neoplasm induced by constitutive expression of JAK2V617F in knock-in mice. Blood. 2010;116:783–7.

    Article  CAS  PubMed  Google Scholar 

  51. Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148:399–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Abd-Aziz N, Stanbridge EJ, Shafee N. Bortezomib attenuates HIF-1- but not HIF-2-mediated transcriptional activation. Oncol Lett. 2015;10:2192–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dokucu AI, Ozturk H, Ozturk H, Tuncer MC, Yilmaz F. The effects of molsidomine on hypoxia inducible factor alpha and Sonic hedgehog in testicular ischemia/reperfusion injury in rats. Int Urol Nephrol. 2009;41:101–8.

    Article  CAS  PubMed  Google Scholar 

  54. Wang Y, Liu Y, Tang F, Bernot KM, Schore R, Marcucci G, et al. Echinomycin protects mice against relapsed acute myeloid leukemia without adverse effect on hematopoietic stem cells. Blood. 2014;124:1127–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Romanov VS, Abramova MV, Svetlikova SB, Bykova TV, Zubova SG, Aksenov ND, et al. p21(Waf1) is required for cellular senescence but not for cell cycle arrest induced by the HDAC inhibitor sodium butyrate. Cell Cycle. 2010;9:3945–55.

    Article  CAS  PubMed  Google Scholar 

  56. Lv B, Li F, Fang J, Xu L, Sun C, Han J, et al. Hypoxia inducible factor 1alpha promotes survival of mesenchymal stem cells under hypoxia. Am J Transl Res. 2017;9:1521–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hitosugi T, Fan J, Chung TW, Lythgoe K, Wang X, Xie J, et al. Tyrosine phosphorylation of mitochondrial pyruvate dehydrogenase kinase 1 is important for cancer metabolism. Mol Cell. 2011;44:864–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shah S, Mudireddy M, Hanson CA, Ketterling RP, Gangat N, Pardanani A, et al. Marked elevation of serum lactate dehydrogenase in primary myelofibrosis: clinical and prognostic correlates. Blood Cancer J. 2017;7:657.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Reddy MM, Fernandes MS, Deshpande A, Weisberg E, Inguilizian HV, Abdel-Wahab O, et al. The JAK2V617F oncogene requires expression of inducible phosphofructokinase/fructose-bisphosphatase 3 for cell growth and increased metabolic activity. Leukemia. 2012;26:481–9.

    Article  CAS  PubMed  Google Scholar 

  60. Nageswara Rao T, Hansen N, Hilfiker J, Rai S, Majewska JM, Lekovic D, et al. JAK2 mutant hematopoietic cells display metabolic alterations that can be targeted to treat myeloproliferative neoplasms. Blood. 2019. https://doi.org/10.1182/blood.2019000162.

Download references

Acknowledgements

This work was supported by the Genomics Facility, a core facility of the Interdisciplinary Center for Clinical Research (IZKF) Aachen within the Faculty of Medicine at RWTH Aachen University. This work was supported by the Core Facility Flow Cytometry, a Core Facility of the Interdisciplinary Center for Clinical Research (IZKF) Aachen within the Faculty of Medicine at RWTH Aachen University. This study was supported by a research grant from the German Research Foundation (DFG KO2155/6–1) to SK, from the Interdisciplinary Centre for Clinical Research within the faculty of Medicine at the RWTH Aachen University (O3–3) and by START grant by the Faculty of Medicine in Aachen to DG. Biomaterial samples were provided by the RWTH centralized Biomaterial Bank Aachen (RWTH cBMB, Aachen, Germany) in accordance with the regulations of the biomaterial bank and the approval of the ethics committee of the medical faculty, RWTH Aachen. The Kranc laboratory is funded by Cancer Research UK (Senior Fellowship and Programme Grant), Medical Research Council, The Barts Charity, Bloodwise, and the Kay Kendall Leukaemia Fund. The pMSCV-IRES-GFP plasmids containing Jak2WT or Jak2V617F were a kind gift from the lab of Dr. Gary Gilliland. Parts of this work were part of the PhD thesis of JB and the bachelor’s thesis of AH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deniz Gezer.

Ethics declarations

Conflict of interest

SK reports advisory board activity for Pfizer, Incyte/Ariad, Novartis, AOP Pharma, BMS, CTI, Roche, Baxalta, Sanofi, honoraria from Novartis, BMS, Pfizer, Incyte/Ariad, Shire, Roche, AOP Pharma, Janssen, research funding from Novartis Foundation, BMS, Novartis, and other financial disclosures (i.e., travel support) from Alexion, Novartis, BMS, Incyte/Ariad, AOP Pharma, Baxalta, CTI, Pfizer, Sanofi, Celgene, Shire, and Janssen. THB reports consultancy from Pfizer, Novartis, Janssen, Merck, Incyte/Ariad and research funding from Pfizer and Novartis. DG reports advisory board activity for AMGEN. The remaining authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baumeister, J., Chatain, N., Hubrich, A. et al. Hypoxia-inducible factor 1 (HIF-1) is a new therapeutic target in JAK2V617F-positive myeloproliferative neoplasms. Leukemia 34, 1062–1074 (2020). https://doi.org/10.1038/s41375-019-0629-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-019-0629-z

This article is cited by

Search

Quick links