Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Maternal H-antigen secretor status is an early biomarker for potential preterm delivery

Abstract

Objective

Pre-pregnancy or first trimester biomarkers predicting preterm delivery are lacking. The purpose of this study was to determine whether maternal H-antigen (secretor status) is a potential biomarker for preterm delivery.

Methods

This cohort study examined maternal saliva samples and birth data gathered by the National Children’s Study Vanguard pilot phase (2009–2014) and included 300 women who were ≥18 years old and provided birth data and saliva samples. The maternal secretor status phenotype was determined by quantifying H-antigen in saliva using enzyme-linked immunoassay. Mothers were stratified by secretor status and multivariable analysis estimated adjusted associations with preterm delivery.

Results

Maternal lack of H-antigen production was an independent risk factor for preterm delivery after adjusting for known confounders (aOR 4.53; 95% CI: 1.74, 11.81; P = 0.002).

Conclusions

Maternal H-antigen may be a biomarker identifying women at-risk for preterm delivery. Prospective cohort studies validating these findings are needed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The distribution of H-antigen concentrations.

Similar content being viewed by others

References

  1. Liu L, Oza S, Hogan D, Chu Y, Perin J, Zhu J, et al. Global, regional, and national causes of under-5 mortality in 2000-15: an updated systematic analysis with implications for the sustainable development goals. Lancet Lond Engl 2016;388:3027–35.

    Article  Google Scholar 

  2. Martin JA, Hamilton BE, Osterman MJK, Driscoll AK, Drake P. Births: final data for 2017. Natl Vital Stat Rep. 2018;67:1–50.

    PubMed  Google Scholar 

  3. Ananth CV, Friedman AM, Goldenberg RL, Wright JD, Vintzileos AM. Association between temporal changes in neonatal mortality and spontaneous and clinician-initiated deliveries in the United States 2006-2013. JAMA Pediatr. 2018;172:949–57.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Richter LL, Ting J, Muraca GM, Boutin A, Wen Q, Lyons J, et al. Temporal trends in preterm birth, neonatal mortality, and neonatal morbidity following spontaneous and clinician-initiated delivery in Canada, 2009-2016. J Obstet Gynaecol Can 2019;1701–2163:30269–5.

    Google Scholar 

  5. Richter LL, Ting J, Muraca GM, Synnes A, Lim KI, Lisonkova S. Temporal trends in neonatal mortality and morbidity following spontaneous and clinician-initiated preterm birth in Washington State, USA: a population-based study. BMJ Open. 2019;9:e023004.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Medley N, Poljak B, Mammarella S, Alfirevic Z. Clinical guidelines for prevention and management of preterm birth: a systematic review. BJOG Int J Obstet Gynaecol. 2018;125:1361–9.

    Article  CAS  Google Scholar 

  7. Owen J, Yost N, Berghella V, Thom E, Swain M, Dildy GA, et al. Mid-trimester endovaginal sonography in women at high risk for spontaneous preterm birth. JAMA 2001;286:1340–8.

    Article  CAS  PubMed  Google Scholar 

  8. Goldenberg RL, Iams JD, Mercer BM, Meis P, Moawad A, Das A, et al. What we have learned about the predictors of preterm birth. Semin Perinatol. 2003;27:185–93.

    Article  PubMed  Google Scholar 

  9. Antsaklis P, Daskalakis G, Pilalis A, Papantoniou N, Mesogitis S, Antsaklis A. The role of cervical length measurement at 11-14 weeks for the prediction of preterm delivery. J Matern Fetal Neonatal Med. 2011;23:465–70.

    Article  Google Scholar 

  10. Berghella V, Talucci M, Desai A. Does transvaginal sonographic measurement of cervical length before 14 weeks predict preterm delivery in high-risk pregnancies? Ultrasound Obstet Gynecol. 2003;21:140–4.

    Article  CAS  PubMed  Google Scholar 

  11. Wei S-Q, Fraser W, Luo Z-C. Inflammatory cytokines and spontaneous preterm birth in asymptomatic women: a systematic review. Obstet Gynecol. 2010;116:393–401.

    Article  PubMed  Google Scholar 

  12. Amabebe E, Chapman DR, Stern VL, Stafford G, Anumba DOC. Mid-gestational changes in cervicovaginal fluid cytokine levels in asymptomatic pregnant women are predictive markers of inflammation-associated spontaneous preterm birth. J Reprod Immunol. 2018;126:1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jung EY, Park JW, Ryu A, Lee SY, Cho S-H, Park KH. Prediction of impending preterm delivery based on sonographic cervical length and different cytokine levels in cervicovaginal fluid in preterm labor. J Obstet Gynaecol Res. 2016;42:158–65.

    Article  CAS  PubMed  Google Scholar 

  14. Kindinger LM, Bennett PR, Lee YS, Marchesi JR, Smith A, Cacciatore S, et al. The interaction between vaginal microbiota, cervical length, and vaginal progesterone treatment for preterm birth risk. Microbiome 2017;5:6.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Elovitz MA, Brown AG, Anton L, Gilstrop M, Heiser L, Bastek J. Distinct cervical microRNA profiles are present in women destined to have a preterm birth. Am J Obstet Gynecol. 2014;210:221.e1–11.

    Article  CAS  Google Scholar 

  16. Ferrer-Admetlla A, Sikora M, Laayouni H, Esteve A, Roubinet F, Blancher A, et al. A natural history of FUT2 polymorphism in humans. Mol Biol Evol. 2009;26:1993–2003.

    Article  CAS  PubMed  Google Scholar 

  17. Koda Y, Tachida H, Pang H, Liu Y, Soejima M, Ghaderi AA, et al. Contrasting patterns of polymorphisms at the ABO-secretor gene (FUT2) and plasma alpha(1,3)fucosyltransferase gene (FUT6) in human populations. Genetics 2001;158:747–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ravn V, Dabelsteen E. Tissue distribution of histo-blood group antigens. APMIS Acta Pathol Microbiol Immunol Scand. 2000;108:1–28.

    Article  CAS  Google Scholar 

  19. Kim W, Kim YK, Chung SC, Lee SW, Kho HS. Detection of ABH blood group antigens in the saliva of Koreans and their stability according to storage of saliva samples. Forensic Sci Int. 2002;129:58–63.

    Article  CAS  PubMed  Google Scholar 

  20. Navas EL, Venegas MF, Duncan JL, Anderson BE, Chmiel JS, Schaeffer AJ. Blood group antigen expression on vaginal and buccal epithelial cells and mucus in secretor and nonsecretor women. J Urol. 1993;149:1492–8.

    Article  CAS  PubMed  Google Scholar 

  21. Taylor SL, McGuckin MA, Wesselingh S, Rogers GB. Infection’s sweet tooth: how glycans mediate infection and disease susceptibility. Trends Microbiol. 2018;26:92–101.

    Article  CAS  PubMed  Google Scholar 

  22. Goto Y, Uematsu S, Kiyono H. Epithelial glycosylation in gut homeostasis and inflammation. Nat Immunol. 2016;17:1244–51.

    Article  CAS  PubMed  Google Scholar 

  23. Pickard JM, Chervonsky AV. Intestinal fucose as a mediator of host-microbe symbiosis. J Immunol. 2015;194:5588–93.

    Article  CAS  PubMed  Google Scholar 

  24. Audfray A, Varrot A, Imberty A. Bacteria love our sugars: interaction between soluble lectins and human fucosylated glycans, structures, thermodynamics and design of competing glycocompounds. Comptes Rendus Chim. 2013;16:482–90.

    Article  CAS  Google Scholar 

  25. Pickard JM, Maurice CF, Kinnebrew MA, Abt MC, Schenten D, Golovkina TV, et al. Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature 2014;514:638–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pham TAN, Clare S, Goulding D, Arasteh JM, Stares MD, Browne HP, et al. Epithelial IL-22RA1-mediated fucosylation promotes intestinal colonization resistance to an opportunistic pathogen. Cell Host Microbe. 2014;16:504–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Thomsson KA, Schulz BL, Packer NH, Karlsson NG. MUC5B glycosylation in human saliva reflects blood group and secretor status. Glycobiology 2005;15:791–804.

    Article  CAS  PubMed  Google Scholar 

  28. Janssen WJ, Stefanski AL, Bochner BS, Evans CM. Control of lung defence by mucins and macrophages: ancient defence mechanisms with modern functions. Eur Respir J. 2016;48:1201–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rose MC, Voynow JA. Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiol Rev. 2006;86:245–78.

    Article  CAS  PubMed  Google Scholar 

  30. Raza MW, Blackwell CC, Molyneaux P, James VS, Ogilvie MM, Inglis JM, et al. Association between secretor status and respiratory viral illness. BMJ 1991;303:815–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Blackwell CC, Jónsdóttir K, Hanson M, Todd WT, Chaudhuri AK, Mathew B, et al. Non-secretion of ABO antigens predisposing to infection by Neisseria meningitidis and Streptococcus pneumoniae. Lancet Lond Engl. 1986;2:284–5.

    Article  CAS  Google Scholar 

  32. Blackwell CC, Jonsdottir K, Hanson MF, Weir DM. Non-secretion of ABO blood group antigens predisposing to infection by Haemophilus influenzae. Lancet Lond Engl. 1986;2:687.

    Article  CAS  Google Scholar 

  33. Morrow AL, Ruiz-Palacios GM, Altaye M, Jiang X, Guerrero ML, Meinzen-Derr JK, et al. Human milk oligosaccharides are associated with protection against diarrhea in breast-fed infants. J Pediatr. 2004;145:297–303.

    Article  CAS  PubMed  Google Scholar 

  34. Ruiz-Palacios GM, Cervantes LE, Ramos P, Chavez-Munguia B, Newburg DS. Campylobacter jejuni binds intestinal H(O) antigen (Fuc alpha 1, 2Gal beta 1, 4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection. J Biol Chem. 2003;278:14112–20.

    Article  CAS  PubMed  Google Scholar 

  35. Duell EJ, Bonet C, Muñoz X, Lujan-Barroso L, Weiderpass E, Boutron-Ruault M-C, et al. Variation at ABO histo-blood group and FUT loci and diffuse and intestinal gastric cancer risk in a European population. Int J Cancer. 2015;136:880–93.

    Article  CAS  PubMed  Google Scholar 

  36. Folseraas T, Melum E, Rausch P, Juran BD, Ellinghaus E, Shiryaev A, et al. Extended analysis of a genome-wide association study in primary sclerosing cholangitis detects multiple novel risk loci. J Hepatol. 2012;57:366–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McGovern DPB, Jones MR, Taylor KD, Marciante K, Yan X, Dubinsky M, et al. Fucosyltransferase 2 (FUT2) non-secretor status is associated with Crohn’s disease. Hum Mol Genet. 2010;19:3468–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Franke A, McGovern DPB, Barrett JC, Wang K, Radford-Smith GL, Ahmad T, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet. 2010;42:1118–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Parmar AS, Alakulppi N, Paavola-Sakki P, Kurppa K, Halme L, Färkkilä M, et al. Association study of FUT2 (rs601338) with celiac disease and inflammatory bowel disease in the Finnish population. Tissue Antigens. 2012;80:488–93.

    Article  CAS  PubMed  Google Scholar 

  40. Kauffmann F, Frette C, Pham QT, Nafissi S, Bertrand JP, Oriol R. Associations of blood group-related antigens to FEV1, wheezing, and asthma. Am J Respir Crit Care Med. 1996;153:76–82.

    Article  CAS  PubMed  Google Scholar 

  41. Ronchetti F, Villa MP, Ronchetti R, Bonci E, Latini L, Pascone R, et al. ABO/Secretor genetic complex and susceptibility to asthma in childhood. Eur Respir J. 2001;17:1236–8.

    Article  CAS  PubMed  Google Scholar 

  42. Smyth DJ, Cooper JD, Howson JMM, Clarke P, Downes K, Mistry T, et al. FUT2 nonsecretor status links type 1 diabetes susceptibility and resistance to infection. Diabetes 2011;60:3081–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Weiss FU, Schurmann C, Guenther A, Ernst F, Teumer A, Mayerle J, et al. Fucosyltransferase 2 (FUT2) non-secretor status and blood group B are associated with elevated serum lipase activity in asymptomatic subjects, and an increased risk for chronic pancreatitis: a genetic association study. Gut 2015;64:646–56.

    Article  CAS  PubMed  Google Scholar 

  44. Tang H, Jin X, Li Y, Jiang H, Tang X, Yang X, et al. A large-scale screen for coding variants predisposing to psoriasis. Nat Genet. 2014;46:45–50.

    Article  CAS  PubMed  Google Scholar 

  45. Xavier JM, Shahram F, Sousa I, Davatchi F, Matos M, Abdollahi BS, et al. FUT2: filling the gap between genes and environment in Behçet’s disease? Ann Rheum Dis. 2015;74:618–24.

    Article  CAS  PubMed  Google Scholar 

  46. Biondi C, Cotorruelo C, Balagué C, Toresani I. Association of the “secretor state” with the presence and recurrence of urinary infections in pregnant women. Ann Clin Biochem. 1999;36:391–2.

    Article  PubMed  Google Scholar 

  47. Kumar H, Wacklin P, Nakphaichit M, Loyttyniemi E, Chowdhury S, Shouche Y, et al. Secretor status is strongly associated with microbial alterations observed during pregnancy. PLoS ONE. 2015;10:e0134623.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Delzell JE, Lefevre ML. Urinary tract infections during pregnancy. Am Fam Physician. 2000;61:713–21.

    PubMed  Google Scholar 

  49. Romero R, Oyarzun E, Mazor M, Sirtori M, Hobbins J, Bracken M. Meta-analysis of the relationship between asymptomatic bacteriuria and preterm delivery/low birth weight. Obstet Gynecol. 1989;73:576–82.

    CAS  PubMed  Google Scholar 

  50. Klein LL, Gibbs RS. Infection and preterm birth. Obstet Gynecol Clin North Am. 2005;32:397–410.

    Article  PubMed  Google Scholar 

  51. Hillier SL, Nugent RP, Eschenbach DA, Krohn MA, Gibbs RS, Martin DH, et al. Association between bacterial vaginosis and preterm delivery of a low-birth-weight infant. The Vaginal Infections and Prematurity Study Group. N. Engl J Med. 1995;333:1737–42.

    Article  CAS  PubMed  Google Scholar 

  52. Brown RG, Marchesi JR, Lee YS, Smith A, Lehne B, Kindinger LM, et al. Vaginal dysbiosis increases risk of preterm fetal membrane rupture, neonatal sepsis and is exacerbated by erythromycin. BMC Med. 2018;16:9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Fettweis JM, Serrano MG, Brooks JP, Edwards DJ, Girerd PH, Parikh HI, et al. The vaginal microbiome and preterm birth. Nat Med. 2019;25:1012–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cappelletti M, Della Bella S, Ferrazzi E, Mavilio D, Divanovic S. Inflammation and preterm birth. J Leukoc Biol. 2016;99:67–78.

    Article  CAS  PubMed  Google Scholar 

  55. Challis JR, Lockwood CJ, Myatt L, Norman JE, Strauss JF, Petraglia F. Inflammation and pregnancy. Reprod Sci. 2009;16:206–15.

    Article  CAS  PubMed  Google Scholar 

  56. Mendelson CR. Minireview: fetal-maternal hormonal signaling in pregnancy and labor. Mol Endocrinol Baltim Md. 2009;23:947–54.

    Article  CAS  Google Scholar 

  57. NCS_Archive_Study_Description.pdf [Internet]. https://www.nichd.nih.gov/sites/default/files/research/NCS/Documents/NCS_Archive_Study_Description.pdf. Accessed 24 Apr 2019 (2019).

  58. Morrow AL, Meinzen-Derr J, Huang P, Schibler KR, Cahill T, Keddache M, et al. Fucosyltransferase 2 non-secretor and low secretor status predicts severe outcomes in premature infants. J Pediatr. 2011;158:745–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nordgren J, Kindberg E, Lindgren PE, Matussek A, Svensson L. Norovirus gastroenteritis outbreak with a secretor-independent susceptibility pattern, Sweden. Emerg Infect Dis. 2010;16:81–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nordgren J, Nitiema LW, Ouermi D, Simpore J, Svensson L. Host genetic factors affect susceptibility to norovirus infections in Burkina Faso. PLoS ONE. 2013;8:e69557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Domino SE, Hurd EA. LacZ expression in Fut2-LacZ reporter mice reveals estrogen-regulated endocervical glandular expression during estrous cycle, hormone replacement, and pregnancy. Glycobiology 2004;14:169–75.

    Article  CAS  PubMed  Google Scholar 

  62. Ozgu-Erdinc AS, Cavkaytar S, Aktulay A, Buyukkagnici U, Erkaya S, Danisman N. Mid-trimester maternal serum and amniotic fluid biomarkers for the prediction of preterm delivery and intrauterine growth retardation. J Obstet Gynaecol Res. 2014;40:1540–6.

    Article  CAS  PubMed  Google Scholar 

  63. Öz M, Polat B, Özgü E, Seçkin KD, Taşin C, Danişman N. Interleukin-6 and C-reactive protein levels in the amniotic fluid as indicators of preterm delivery in Turkish women. Clin Exp Obstet Gynecol. 2015;42:801–4.

    PubMed  Google Scholar 

  64. Kesrouani A, Chalhoub E, El Rassy E, Germanos M, Khazzaka A, Rizkallah J, et al. Prediction of preterm delivery by second trimester inflammatory biomarkers in the amniotic fluid. Cytokine 2016;85:67–70.

    Article  CAS  PubMed  Google Scholar 

  65. Kim SM, Romero R, Lee J, Chaemsaithong P, Lee M-W, Chaiyasit N, et al. About one-half of early spontaneous preterm deliveries can be identified by a rapid matrix metalloproteinase-8 (MMP-8) bedside test at the time of mid-trimester genetic amniocentesis. J Matern Fetal Neonatal Med. 2016;29:2414–22.

    Article  CAS  PubMed  Google Scholar 

  66. Suff N, Story L, Shennan A. The prediction of preterm delivery: what is new? Semin Fetal Neonatal Med. 2019;24:27–32.

    Article  PubMed  Google Scholar 

  67. Iams JD, Grobman WA, Lozitska A, Spong CY, Saade G, Mercer BM, et al. Adherence to criteria for transvaginal ultrasound imaging and measurement of cervical length. Am J Obstet Gynecol. 2013;209:365.e1–5.

    Article  Google Scholar 

  68. Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller A-B, Narwal R, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet Lond Engl 2012;379:2162–72.

    Article  Google Scholar 

  69. Saboor M, Ullah A, Qamar K, Mir A. Moinuddin null. Frequency of ABH secretors and non secretors: a cross sectional study in Karachi. Pak J Med Sci. 2014;30:189–93.

    PubMed  PubMed Central  Google Scholar 

  70. Larsson MM, Rydell GEP, Grahn A, Rodriguez-Diaz J, Akerlind B, Hutson AM, et al. Antibody prevalence and titer to norovirus (genogroup II) correlate with secretor (FUT2) but not with ABO phenotype or Lewis (FUT3) genotype. J Infect Dis. 2006;194:1422–7.

    Article  CAS  PubMed  Google Scholar 

  71. Mukhopadhya I, Hansen R, El-Omar EM, Hold GL. IBD—what role do Proteobacteria play? Nat Rev Gastroenterol Amp Hepatol. 2012;9:219.

    Article  CAS  Google Scholar 

  72. Atarashi K, Tanoue T, Imaoka A, Kuwahara T, Momose Y, Cheng G, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011;331:338–41.

    Article  CAS  Google Scholar 

  73. Goto Y, Obata T, Kunisawa J, Sato S, Ivanov II, Lamichhane A, et al. Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science. 2014;345:1254009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Demmert M, Schaper A, Pagel J, Gebauer C, Emeis M, Heitmann F, et al. FUT 2 polymorphism and outcome in very-low-birth-weight infants. Pediatr Res. 2015;77:586–90.

    Article  CAS  PubMed  Google Scholar 

  75. Currier RL, Payne DC, Staat MA, Selvarangan R, Shirley SH, Halasa N, et al. Innate susceptibility to norovirus infections influenced by FUT2 genotype in a United States pediatric population. Clin Infect Dis Publ Infect Dis Soc Am. 2015;60:1631–8.

    Article  Google Scholar 

  76. Imbert-Marcille B-M, Barbé L, Dupé M, Le Moullac-Vaidye B, Besse B, Peltier C, et al. A FUT2 gene common polymorphism determines resistance to rotavirus A of the P[8] genotype. J Infect Dis. 2014;209:1227–30.

    Article  CAS  PubMed  Google Scholar 

  77. Thorven M, Grahn A, Hedlund K-O, Johansson H, Wahlfrid C, Larson G, et al. A homozygous nonsense mutation (428G->A) in the human secretor (FUT2) gene provides resistance to symptomatic norovirus (GGII) infections. J Virol. 2005;79:15351–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Carlsson B, Kindberg E, Buesa J, Rydell GE, Lidón MF, Montava R, et al. The G428A nonsense mutation in FUT2 provides strong but not absolute protection against symptomatic GII.4 Norovirus infection. PLoS ONE. 2009;4:e5593.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Innes AL, McGrath KW, Dougherty RH, McCulloch CE, Woodruff PG, Seibold MA, et al. The H antigen at epithelial surfaces is associated with susceptibility to asthma exacerbation. Am J Respir Crit Care Med. 2011;183:189–94.

    Article  PubMed  Google Scholar 

  80. Lopman BA, Trivedi T, Vicuña Y, Costantini V, Collins N, Gregoricus N, et al. Norovirus infection and disease in an Ecuadorian birth cohort: association of certain norovirus genotypes with host FUT2 secretor status. J Infect Dis. 2015;211:1813–21.

    Article  PubMed  Google Scholar 

  81. Hu L, Crawford SE, Czako R, Cortes-Penfield NW, Smith DF, Le Pendu J, et al. Cell attachment protein VP8* of a human rotavirus specifically interacts with A-type histo-blood group antigen. Nature 2012;485:256–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Huang P, Xia M, Tan M, Zhong W, Wei C, Wang L, et al. Spike protein VP8* of human rotavirus recognizes histo-blood group antigens in a type-specific manner. J Virol. 2012;86:4833–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ali S, Niang MA, N’doye I, Critchlow CW, Hawes SE, Hill AV, et al. Secretor polymorphism and human immunodeficiency virus infection in Senegalese women. J Infect Dis. 2000;181:737–9.

    Article  CAS  PubMed  Google Scholar 

  84. Chanzu NM, Mwanda W, Oyugi J, Anzala O. Mucosal blood group antigen expression profiles and HIV infections: a study among female sex workers in Kenya. PLoS ONE. 2015;10:e0133049.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Kindberg E, Hejdeman B, Bratt G, Wahren B, Lindblom B, Hinkula J, et al. A nonsense mutation (428G->A) in the fucosyltransferase FUT2 gene affects the progression of HIV-1 infection. AIDS Lond Engl. 2006;20:685–9.

    Article  CAS  Google Scholar 

  86. Borén T, Falk P, Roth KA, Larson G, Normark S. Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science 1993;262:1892–5.

    Article  PubMed  Google Scholar 

  87. Azevedo M, Eriksson S, Mendes N, Serpa J, Figueiredo C, Resende LP, et al. Infection by Helicobacter pylori expressing the BabA adhesin is influenced by the secretor phenotype. J Pathol. 2008;215:308–16.

    Article  CAS  PubMed  Google Scholar 

  88. Magalhães A, Gomes J, Ismail MN, Haslam SM, Mendes N, Osório H, et al. Fut2-null mice display an altered glycosylation profile and impaired BabA-mediated Helicobacter pylori adhesion to gastric mucosa. Glycobiology 2009;19:1525–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Hurd EA, Domino SE. Increased susceptibility of secretor factor gene Fut2-null mice to experimental vaginal candidiasis. Infect Immun. 2004;72:4279–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Thom SM, Blackwell CC, MacCallum CJ, Weir DM, Brettle RP, Kinane DF, et al. Non-secretion of blood group antigens and susceptibility to infection by Candida species. FEMS Microbiol Immunol. 1989;1:401–5.

    Article  CAS  PubMed  Google Scholar 

  91. Rayes A, Morrow AL, Payton LR, Lake KE, Lane A, Davies SM. A genetic modifier of the gut microbiome influences the risk of graft-versus-host disease and bacteremia after hematopoietic stem cell transplantation. Biol Blood Marrow Transpl J Am Soc Blood Marrow Transpl. 2016;22:418–22.

    Article  Google Scholar 

  92. Taylor SL, Woodman RJ, Chen AC, Burr LD, Gordon DL, McGuckin MA, et al. FUT2 genotype influences lung function, exacerbation frequency and airway microbiota in non-CF bronchiectasis. Thorax 2017;72:304–10.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Esposito Family Fund for Human Milk Research and Keith A. and Catherine B. Stevenson. We gratefully acknowledge the research team responsible for the original sample and data collection. This manuscript was prepared using National Children’s Study Research Materials obtained from the NCS Vanguard Data and Sample Archive and Access System and does not necessarily reflect the opinions or views of the Eunice Kennedy Shriver National Institute of Child Health and Human Development or the National Institutes of Health. We would like to thank Dr. Karim Rezaul for his support in providing technical advice and assistance during specimen processing and analysis, Drs. Jaqueline McGrath, Justin Radolf, and Jennifer Trzaski for their thoughtful critiques of the manuscript, and Ms. Lauren Tosi for her assistance with manuscript preparation. This was presented at the New England Perinatal Society Meeting in March 2019.

Funding

This study was funded by the Esposito Family Fund for Human Milk Research and Keith A. and Catherine B. Stevenson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Brownell.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caldwell, J., Matson, A., Mosha, M. et al. Maternal H-antigen secretor status is an early biomarker for potential preterm delivery. J Perinatol 41, 2147–2155 (2021). https://doi.org/10.1038/s41372-020-00870-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-020-00870-1

Search

Quick links