Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Behavior, Psychology and Sociology

Two genetic analyses to elucidate causality between body mass index and personality

Abstract

Background/objectives

Many personality traits correlate with BMI, but the existence and direction of causal links between them are unclear. If personality influences BMI, knowing this causal direction could inform weight management strategies. Knowing that BMI instead influences personality would contribute to a better understanding of the mechanisms of personality development and the possible psychological effects of weight change. We tested the existence and direction of causal links between BMI and personality.

Subjects/methods

We employed two genetically informed methods. In Mendelian randomization, allele scores were calculated to summarize genetic propensity for the personality traits neuroticism, worry, and depressive affect and used to predict BMI in an independent sample (N = 3 541). Similarly, an allele score for BMI was used to predict eating-specific and domain-general phenotypic personality scores (PPSs; aggregate scores of personality traits weighted by BMI). In a direction of causation (DoC) analysis, twin data from five countries (N = 5424) were used to assess the fit of four alternative models: PPSs influencing BMI, BMI influencing PPSs, reciprocal causation, and no causation.

Results

In Mendelian randomization, the allele score for BMI predicted domain-general (β = 0.05; 95% CI: 0.02, 0.08; P = 0.003) and eating-specific PPS (β = 0.06; 95% CI: 0.03, 0.09; P < 0.001). The allele score for worry also predicted BMI (β = −0.05; 95% CI: −0.08, −0.02; P < 0.001), while those for neuroticism and depressive affect did not (P ≥ 0.459). In DoC, BMI similarly predicted domain-general (β = 0.21; 95% CI:, 0.18, 0.24; P < 0.001) and eating-specific personality traits (β = 0.19; 95% CI:, 0.16, 0.22; P < 0.001), suggesting causality from BMI to personality traits. In exploratory analyses, links between BMI and domain-general personality traits appeared reciprocal for higher-weight individuals (BMI > ~25).

Conclusions

Although both genetic analyses suggested an influence of BMI on personality traits, it is not yet known if weight management interventions could influence personality. Personality traits may influence BMI in turn, but effects in this direction appeared weaker.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The analytic process.
Fig. 2: A graphical summary of the main findings.

Similar content being viewed by others

Code availability

Code for the analyses is available at https://osf.io/meqxn/.

References

  1. Tremmel M, Gerdtham U-G, Nilsson PM, Saha S. Economic burden of obesity: a systematic literature review. Environ Res Public Health. 2017;14:435.

    Article  Google Scholar 

  2. The GBD 2015 Obesity Collaborators.Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377:13–27.

    Article  Google Scholar 

  3. Jokela M, Hintsanen M, Hakulinen C, Batty GD, Nabi H, Singh-Manoux A, et al. Association of personality with the development and persistence of obesity: a meta-analysis based on individual-participant data. Obes Rev. 2013;14:315–23.

    Article  CAS  PubMed  Google Scholar 

  4. Davey Smith G, Holmes MV, Davies NM, Ebrahim S. Mendel’s laws, Mendelian randomization and causal inference in observational data: substantive and nomenclatural issues. Eur J Epidemiol. 2020;35:99–111.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Friedman HS. Neuroticism and health as individuals age. Person Disord Theory Res. Treat. 2019;10:25–32.

    Article  Google Scholar 

  6. Widiger TA. Personality and psychopathology. World Psychiatry. 2011;10:103–106.

    Article  Google Scholar 

  7. Roberts BW, Kuncel NR, Shiner R, Caspi A, Goldberg LR. The power of personality: the comparative validity of personality traits, socioeconomic status, and cognitive ability for predicting important life outcomes. Perspect Psychol Sci. 2007;2:313–45.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Murray AL, Booth T. Personality and physical health. Curr Opin Psychol. 2015;5:50–55.

    Article  Google Scholar 

  9. Bleidorn W, Hill PL, Back MD, Denissen JJA, Hennecke M, Hopwood CJ, et al. The policy relevance of personality traits. Am Psychol. 2019;74:1056–67.

    Article  PubMed  Google Scholar 

  10. Gerlach G, Herpertz S, Loeber S. Personality traits and obesity: a systematic review. Obes Rev. 2015;16:32–63.

    Article  CAS  PubMed  Google Scholar 

  11. McCrae RR. A more nuanced view of reliability: specificity in the trait hierarchy. Pers Soc Psychol Rev. 2015;19:97–112.

    Article  PubMed  Google Scholar 

  12. Mõttus R. Towards more rigorous personality trait-outcome research. Eur J Pers. 2016;30:292–303.

    Article  Google Scholar 

  13. Vainik U, Dagher A, Realo A, Colodro-Conde L, Mortensen EL, Jang K, et al. Personality-obesity associations are driven by narrow traits: a meta-analysis. Obes Rev. 2019;20:1121–31.

    PubMed  Google Scholar 

  14. Armon G, Melamed S, Shirom A, Shapira I, Berliner S. Personality traits and body weight measures: concurrent and across-time associations. Eur J Pers. 2013;27:398–408.

    Article  Google Scholar 

  15. Hampson SE, Edmonds GW, Goldberg LR, Dubanoski JP, Hillier TA. A life-span behavioral mechanism relating childhood conscientiousness to adult clinical health. Health Psychol. 2015;34:887–95.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lahti M, Räikkönen K, Lemola S, Lahti J, Heinonen K, Kajantie E, et al. Trajectories of physical growth and personality dimensions of the Five-Factor Model. J Pers Soc Psychol. 2013;105:154–69.

    Article  PubMed  Google Scholar 

  17. Bordignon S, Aparício MJG, Bertoletti J, Trentini CM. Personality characteristics and bariatric surgery outcomes: a systematic review. Trends Psychiatry Psychother. 2017;39:124–34.

    Article  PubMed  Google Scholar 

  18. Pingault J-B, O’Reilly PF, Schoeler T, Ploubidis GB, Rijsdijk F, Dudbridge F. Using genetic data to strengthen causal inference in observational research. Nat Rev Genet. 2018;19:566–80.

    Article  CAS  PubMed  Google Scholar 

  19. Lawlor DA, Tilling K, Smith G. Triangulation in aetiological epidemiology. Int J Epidemiol. 2016;45:1866–86.

    PubMed  Google Scholar 

  20. Briley DA, Livengood J, Derringer J. Behaviour genetic frameworks of causal reasoning for personality psychology. Eur J Pers. 2018;32:202–20.

    Article  Google Scholar 

  21. Haycock PC, Burgess S, Wade KH, Bowden J, Relton C, Davey Smith G. Best (but oft-forgotten) practices: the design, analysis, and interpretation of Mendelian randomization studies. Am J Clin Nutr. 2016;103:965–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lawlor DA, Harbord RM, Tybjaerg-Hansen A, Palmer TM, Zacho J, Benn M, et al. Using genetic loci to understand the relationship between adiposity and psychological distress: A Mendelian Randomization study in the Copenhagen General Population Study of 53,221 adults. J Intern Med. 2011;269:525–37.

    Article  CAS  PubMed  Google Scholar 

  23. Wootton RE, Lawn RB, Millard LAC, Davies NM, Taylor AE, Munafò MR. et al. Evaluation of the causal effects between subjective well being and cardiometabolic health: Mendelian randomisation study. BMJ. 2018;362:k3788.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Martins-Silva T, Vaz J, dos S, Hutz MH, Salatino-Oliveira A, Genro JP, et al. Assessing causality in the association between attention-deficit/hyperactivity disorder and obesity: a Mendelian randomization study. Int J Obes. 2019;43:2500–2508.

    Article  Google Scholar 

  25. Chabris CF, Lee JJ, Benjamin DJ, Beauchamp JP, Glaeser EL, Borst G, et al. Why it is hard to find genes associated with social science traits: theoretical and empirical considerations. Am J Public Health. 2013;103:S152–S166.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518:197–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nagel M, Watanabe K, Stringer S, Posthuma D, van der Sluis S. Item-level analyses reveal genetic heterogeneity in neuroticism. Nat Commun. 2018;9:905.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Heath AC, Kessler RC, Neale MC, Hewitt JK, Eaves LJ, Kendler KS. Testing hypotheses about direction of causation using cross-sectional family data. Behav Genet. 1993;23:29–50.

    Article  CAS  PubMed  Google Scholar 

  29. Leitsalu L, Haller T, Esko T, Tammesoo M-L, Alavere H, Snieder H, et al. Cohort profile: Estonian Biobank of the Estonian Genome Center, University of Tartu. Int J Epidemiol. 2015;44:1137–47.

    Article  PubMed  Google Scholar 

  30. Reile R, Tekkel M, Veideman T. Eesti täiskasvanud rahvastiku tervisekäitumise uuring 2018 [Health Behaviour among Estonian Adult Population 2018]. National Institute for Health Development; 2019.

  31. Costa PT, McCrae RR. Revised NEO personality inventory (NEO PI-R) and NEO five-factor inventory (NEO-FFI): Professional manual. Psychological Assessment Resources, Inc; 1992.

  32. McCrae RR, Costa PT Jr., Martin TA. The NEO-PI-3: a more readable revised NEO Personality Inventory. J Pers Assess. 2005;84:261–70.

    Article  PubMed  Google Scholar 

  33. Vainik U, Neseliler S, Konstabel K, Fellows LK, Dagher A. Eating traits questionnaires as a continuum of a single concept. Uncontrolled eating. Appetite. 2015;90:229–39.

    Article  PubMed  Google Scholar 

  34. Yarkoni T, Westfall J. Choosing prediction over explanation in psychology: lessons from machine learning. Perspect Psychol Sci. 2017;12:1100–22.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife. 2018;7:e34408.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Eysenck SBG, Eysenck HJ, Barrett P. A revised version of the psychoticism scale. Pers Indiv Dif. 1985;6:21–29.

    Article  Google Scholar 

  37. Draycott SG, Kline P. The big three or the big five - the EPQ-R vs the NEO-PI: a research note, replication and elaboration. Pers Indiv Dif. 1995;18:801–804.

    Article  Google Scholar 

  38. Lo M-T, Hinds DA, Tung JY, Franz C, Fan C-C, Wang Y, et al. Genome-wide analyses for personality traits identify six genomic loci and show correlations with psychiatric disorders. Nat Genet. 2017;49:152–156.

    Article  CAS  PubMed  Google Scholar 

  39. Davies NM, Holmes MV, Smith GD. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ. 2018;362:k601.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Muthén LK, Muthén B. Mplus. The comprehensive modelling program for applied researchers: User’s guide. (Los Angeles, CA: Muthén & Muthén. 2016).

  41. Hu L-T, Bentler PM. Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct Equ Modeling. 1999;6:1–55.

    Article  Google Scholar 

  42. MacCallum RC, Browne MW, Sugawara HM. Power analysis and determination of sample size for covariance structure modeling. Psychol Methods. 1996;1:130–49.

    Article  Google Scholar 

  43. Burnham KP, Anderson DR. Multimodel inference: understanding AIC and BIC in model selection. Sociol Method Res. 2004;33:261–304.

    Article  Google Scholar 

  44. Rasmussen SHR, Ludeke S, Hjelmborg JVB. A major limitation of the direction of causation model: non-shared environmental confounding. Twin Res Hum Genet. 2019;22:14–26.

    Article  PubMed  Google Scholar 

  45. Henry S, Mõttus R Traits versus adaptations: examining item-level characteristics of the five-factor model of personality. 2018. https://osf.io/3cebh/ (Accessed 9 Feb 2020).

  46. Leatherdale ST, Laxer RE. Reliability and validity of the weight status and dietary intake measures in the COMPASS questionnaire: Are the self-reported measures of body mass index (BMI) and Canada’s food guide servings robust? Int J Behav Nutr Phys Act. 2013;10:42.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Briley DA, Harden KP, Bates TC, Tucker-Drob EM. Nonparametric estimates of gene environment interaction using local structural equation modeling. Behav Genet. 2015;45:581–96.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Blundell JE, Gibbons C, Beaulieu K, Casanova N, Duarte C, Finlayson G, et al. The drive to eat in homo sapiens: Energy expenditure drives energy intake. Physiol Behav. 2020;219:112846.

    Article  CAS  PubMed  Google Scholar 

  49. Vainik U, García-García I, Dagher A. Uncontrolled eating: a unifying heritable trait linked with obesity, overeating, personality and the brain. European Journal of Neuroscience. 2019;50:2430–45.

    Article  PubMed  Google Scholar 

  50. Hudson NW, Roberts BW. Goals to change personality traits: concurrent links between personality traits, daily behavior, and goals to change oneself. J Res Pers. 2014;53:68–83.

    Article  Google Scholar 

  51. Millard LAC, Davies NM, Tilling K, Gaunt TR, Davey Smith G. Searching for the causal effects of body mass index in over 300 000 participants in UK Biobank, using Mendelian randomization. PLoS Genet. 2019;15:e1007951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Weiss A, Deary IJ. A new look at neuroticism: should we worry so much about worrying? Curr Dir Psychol Sci. 2020;29:92–101.

    Article  Google Scholar 

  53. Emery RL, Levine MD. Questionnaire and behavioral task measures of impulsivity are differentially associated with body mass index: a comprehensive meta-analysis. Psychol Bull. 2017;143:868–902.

    Article  PubMed  Google Scholar 

  54. Turkheimer E, Pettersson E, Horn EE. A phenotypic null hypothesis for the genetics of personality. Annu Rev Psychol. 2014;65:515–40.

    Article  PubMed  Google Scholar 

  55. Denissen JJA, Luhmann M, Chung JM, Bleidorn W. Transactions between life events and personality traits across the adult lifespan. J Pers Soc Psychol. 2019;116:612–33.

    Article  PubMed  Google Scholar 

  56. Silventoinen K, Jelenkovic A, Sund R, Yokoyama Y, Hur YM, Cozen W, et al. Differences in genetic and environmental variation in adult BMI by sex, age, time period, and region: an individual-based pooled analysis of 40 twin cohorts. Am J Clin Nutr. 2017;106:457–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schrempft S, Jaarsveld CHM, van, Fisher A, Herle M, Smith AD, Fildes A, et al. Variation in the heritability of child body mass index by obesogenic home environment. JAMA Pediatr. 2018;172:1153–60.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Horn EE, Turkheimer E, Strachan E, Duncan GE. Behavioral and environmental modification of the genetic influence on body mass index: a twin study. Behav Genet. 2015;45:409–26.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Levallius J, Clinton D, Bäckström M, Norring C. Who do you think you are? - Personality in eating disordered patients. J Eat Disord. 2015;3:3.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hudson NW, Fraley RC. Changing for the better? Longitudinal associations between volitional personality change and psychological well-being. Pers Soc Psychol Bull. 2016;42:603–15.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

UV has been funded by Estonian Research Council grant MOBTP94. Supplementary information is available at International Journal of Obesity’s website and at https://osf.io/preprints/nutrixiv/q8ehr/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uku Vainik.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arumäe, K., Briley, D., Colodro-Conde, L. et al. Two genetic analyses to elucidate causality between body mass index and personality. Int J Obes 45, 2244–2251 (2021). https://doi.org/10.1038/s41366-021-00885-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-021-00885-4

Search

Quick links