Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Compromised BRCA1–PALB2 interaction is associated with breast cancer risk

Abstract

The major breast cancer suppressor proteins BRCA1 and BRCA2 play essential roles in homologous recombination (HR)-mediated DNA repair, which is thought to be critical for tumor suppression. The two BRCA proteins are linked by a third tumor suppressor, PALB2, in the HR pathway. While truncating mutations in these genes are generally pathogenic, interpretation of missense variants remains a challenge. To date, patient-derived missense variants that disrupt PALB2 binding have been identified in BRCA1 and BRCA2; however, there has not been sufficient evidence to prove their pathogenicity in humans, and no variants in PALB2 that disrupt either its BRCA1 or BRCA2 binding have been reported. Here we report on the identification of a novel PALB2 variant, c.104T>C (p.L35P), that segregates in a family with a strong history of breast cancer. Functional analyses showed that L35P abrogates the PALB2–BRCA1 interaction and completely disables its abilities to promote HR and confer resistance to platinum salts and PARP inhibitors. Whole-exome sequencing of a breast cancer from a c.104T>C carrier revealed a second, somatic, truncating mutation affecting PALB2, and the tumor displays hallmark genomic features of tumors with BRCA mutations and HR defects, cementing the pathogenicity of L35P. Parallel analyses of other germline variants in the PALB2 N-terminal BRCA1-binding domain identified multiple variants that affect HR function to varying degrees, suggesting their possible contribution to cancer development. Our findings establish L35P as the first pathogenic missense mutation in PALB2 and directly demonstrate the requirement of the PALB2-BRCA1 interaction for breast cancer suppression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Zhang F, Ma J, Wu J, Ye L, Cai H, Xia B et al. PALB2 links BRCA1 and BRCA2 in the DNA-damage response. Curr Biol 2009; 19: 524–529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sy SM, Huen MS, Chen J . PALB2 is an integral component of the BRCA complex required for homologous recombination repair. Proc Natl Acad Sci USA 2009; 106: 7155–7160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang F, Fan Q, Ren K, Andreassen PR . PALB2 functionally connects the breast cancer susceptibility proteins BRCA1 and BRCA2. Mol Cancer Res 2009; 7: 1110–1118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xia B, Sheng Q, Nakanishi K, Ohashi A, Wu J, Christ N et al. Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol Cell 2006; 22: 719–729.

    Article  CAS  PubMed  Google Scholar 

  5. Tischkowitz M, Xia B . PALB2/FANCN: recombining cancer and Fanconi anemia. Cancer Res 2010; 70: 7353–7359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Walsh T, Casadei S, Lee MK, Pennil CC, Nord AS, Thornton AM et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc Natl Acad Sci USA 2011; 108: 18032–18037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Antoniou AC, Casadei S, Heikkinen T, Barrowdale D, Pylkas K, Roberts J et al. Breast-cancer risk in families with mutations in PALB2. N Engl J Med 2014; 371: 497–506.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Oliver AW, Swift S, Lord CJ, Ashworth A, Pearl LH . Structural basis for recruitment of BRCA2 by PALB2. EMBO Rep 2009; 10: 990–996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Buisson R, Masson JY . PALB2 self-interaction controls homologous recombination. Nucleic Acids Res 2012; 40: 10312–10323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sy SM, Huen MS, Zhu Y, Chen J . PALB2 regulates recombinational repair through chromatin association and oligomerization. J Biol Chem 2009; 284: 18302–18310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Casadei S, Norquist BM, Walsh T, Stray S, Mandell JB, Lee MK et al. Contribution of inherited mutations in the BRCA2-interacting protein PALB2 to familial breast cancer. Cancer Res 2011; 71: 2222–2229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reid S, Schindler D, Hanenberg H, Barker K, Hanks S, Kalb R et al. Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat Genet 2007; 39: 162–164.

    Article  CAS  PubMed  Google Scholar 

  13. Popova T, Manie E, Rieunier G, Caux-Moncoutier V, Tirapo C, Dubois T et al. Ploidy and large-scale genomic instability consistently identify basal-like breast carcinomas with BRCA1/2 inactivation. Cancer Res 2012; 72: 5454–5462.

    Article  CAS  PubMed  Google Scholar 

  14. Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature 2016; 534: 47–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ding YC, Steele L, Kuan CJ, Greilac S, Neuhausen SL . Mutations in BRCA2 and PALB2 in male breast cancer cases from the United States. Breast Cancer Res Treat 2011; 126: 771–778.

    Article  CAS  PubMed  Google Scholar 

  16. Xia B, Dorsman JC, Ameziane N, de Vries Y, Rooimans MA, Sheng Q et al. Fanconi anemia is associated with a defect in the BRCA2 partner PALB2. Nat Genet 2007; 39: 159–161.

    Article  CAS  PubMed  Google Scholar 

  17. Telli ML, Timms KM, Reid JE, Hennessy B, Mills GB, Jensen KC et al. Homologous recombination deficiency (HRD) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple negative breast cancer. Clin Cancer Res 2016; 22: 3764–3773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pennington KP, Walsh T, Harrell MI, Lee MK, Pennil CC, Rendi MH et al. Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. Clin Cancer Res 2014; 20: 764–775.

    Article  CAS  PubMed  Google Scholar 

  19. Huo Y, Cai H, Teplova I, Bowman-Colin C, Chen G, Price S et al. Autophagy opposes p53-mediated tumor barrier to facilitate tumorigenesis in a model of PALB2-associated hereditary breast cancer. Cancer Discov 2013; 3: 894–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Livraghi L, Garber JE . PARP inhibitors in the management of breast cancer: current data and future prospects. BMC Med 2015; 13: 188.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lord CJ, Ashworth A . BRCAness revisited. Nat Rev Cancer 2016; 16: 110–120.

    Article  CAS  PubMed  Google Scholar 

  22. Hartford SA, Chittela R, Ding X, Vyas A, Martin B, Burkett S et al. Interaction with PALB2 is essential for maintenance of genomic integrity by BRCA2. PLoS Genet 2016; 12: e1006236.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Simhadri S, Peterson S, Patel DS, Huo Y, Cai H, Bowman-Colin C et al. Male fertility defect associated with disrupted BRCA1-PALB2 interaction in mice. The J Biol Chem 2014; 289: 24617–24629.

    Article  CAS  PubMed  Google Scholar 

  24. Wang L, Di LJ . BRCA1 and estrogen/estrogen receptor in breast cancer: where they interact? Int J Biol Sci 2014; 10: 566–575.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tischkowitz M, Xia B, Sabbaghian N, Reis-Filho JS, Hamel N, Li G et al. Analysis of PALB2/FANCN-associated breast cancer families. Proc Natl Acad Sci USA 2007; 104: 6788–6793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kohsaka S, Shukla N, Ameur N, Ito T, Ng CK, Wang L et al. A recurrent neomorphic mutation in MYOD1 defines a clinically aggressive subset of embryonal rhabdomyosarcoma associated with PI3K-AKT pathway mutations. Nat Genet 2014; 46: 595–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ho AS, Kannan K, Roy DM, Morris LG, Ganly I, Katabi N et al. The mutational landscape of adenoid cystic carcinoma. Nat Genet 2013; 45: 791–798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Piscuoglio S, Burke KA, Ng CK, Papanastasiou AD, Geyer FC, Macedo GS et al. Uterine adenosarcomas are mesenchymal neoplasms. J Pathol 2016; 238: 381–388.

    Article  CAS  PubMed  Google Scholar 

  29. Li H, Durbin R . Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25: 1754–1760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al. The Genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010; 20: 1297–1303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol 2013; 31: 213–219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Saunders CT, Wong WS, Swamy S, Becq J, Murray LJ, Cheetham RK . Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs. Bioinformatics 2012; 28: 1811–1817.

    Article  CAS  PubMed  Google Scholar 

  33. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 2012; 22: 568–576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shen R, Seshan VE . FACETS: allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencing. Nucleic Acids Res 2016; 44: e131.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Piscuoglio S, Ng CK, Murray MP, Guerini-Rocco E, Martelotto LG, Geyer FC et al. The genomic landscape of male breast cancers. Clin Cancer Res 2016; 22: 4045–4056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Carter SL, Cibulskis K, Helman E, McKenna A, Shen H, Zack T et al. Absolute quantification of somatic DNA alterations in human cancer. Nat Biotechnol 2012; 30: 413–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013; 499: 214–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schwarz JM, Rodelsperger C, Schuelke M, Seelow D . MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods 2010; 7: 575–576.

    Article  CAS  PubMed  Google Scholar 

  39. Carter H, Chen S, Isik L, Tyekucheva S, Velculescu VE, Kinzler KW et al. Cancer-specific high-throughput annotation of somatic mutations: computational prediction of driver missense mutations. Cancer Res 2009; 69: 6660–6667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shihab HA, Gough J, Cooper DN, Stenson PD, Barker GL, Edwards KJ et al. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum Mutat 2013; 34: 57–65.

    Article  CAS  PubMed  Google Scholar 

  41. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C et al. Mutational landscape and significance across 12 major cancer types. Nature 2013; 502: 333–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 2014; 505: 495–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R et al. A census of human cancer genes. Nat Rev Cancer 2004; 4: 177–183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hu Y, Yan C, Hsu CH, Chen QR, Niu K, Komatsoulis GA et al. OmicCircos: a simple-to-use r package for the circular visualization of multidimensional omics data. Cancer Inform 2014; 13: 13–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV et al. Signatures of mutational processes in human cancer. Nature 2013; 500: 415–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Alexandrov LB, Nik-Zainal S, Wedge DC, Campbell PJ, Stratton MR . Deciphering signatures of mutational processes operative in human cancer. Cell Rep 2013; 3: 246–259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012; 490: 61–70.

    Article  Google Scholar 

  48. Tischkowitz M, Sabbaghian N, Ray AM, Lange EM, Foulkes WD, Cooney KA . Analysis of the gene coding for the BRCA2-interacting protein PALB2 in hereditary prostate cancer. Prostate 2008; 68: 675–678.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bogdanova N, Sokolenko AP, Iyevleva AG, Abysheva SN, Blaut M, Bremer M et al. PALB2 mutations in German and Russian patients with bilateral breast cancer. Breast Cancer Res Treat 2011; 126: 545–550.

    Article  PubMed  Google Scholar 

  50. Nguyen-Dumont T, Hammet F, Mahmoodi M, Tsimiklis H, Teo ZL, Li R et al. Mutation screening of PALB2 in clinically ascertained families from the Breast Cancer Family Registry. Breast Cancer Res Treat 2015; 149: 547–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zheng Y, Zhang J, Niu Q, Huo D, Olopade OI . Novel germline PALB2 truncating mutations in African American breast cancer patients. Cancer 2012; 118: 1362–1370.

    Article  CAS  PubMed  Google Scholar 

  52. Ding YC, Steele L, Chu LH, Kelley K, Davis H, John EM et al. Germline mutations in PALB2 in African-American breast cancer cases. Breast Cancer Res Treat 2011; 126: 227–230.

    Article  CAS  PubMed  Google Scholar 

  53. Teo Z, Park DJ, Provenzano E, Chatfield CA, Odefrey FA, Nguyen-Dumont T et al. Prevalence of PALB2 mutations in Australasian multiple-case breast cancer families. Breast Cancer Res 2013; 15: R17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Blanco A, de la Hoya M, Osorio A, Diez O, Miramar MD, Infante M et al. Analysis of PALB2 gene in BRCA1/BRCA2 negative Spanish hereditary breast/ovarian cancer families with pancreatic cancer cases. PLoS One 2013; 8: e67538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tischkowitz M, Capanu M, Sabbaghian N, Li L, Liang X, Vallée MP et al. Rare germline mutations in PALB2 and breast cancer risk: a population-based study. Hum Mutat 2012; 33: 674–680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Olga Aleynikova MD, Andrew Shuen MD, Nelly Sabbaghian MSc, Sonya Zaor MSc and Nancy Hamel MSc for their assistance. BX is supported by the National Cancer Institute (R0A138804 and R01CA188096). WDF is funded by Susan G Komen and the Quebec Breast Cancer Foundation. KAB, SHB, BW and JRF are supported in part by a Cancer Center Support Grant of the National Cancer Institute (grant No P30CA008748). MT is funded by the European Union Seventh Framework Program (2007Y2013)/European Research Council (Grant No. 310018). SLN is supported by Morris and Horowitz Endowed Professorship and the National Cancer Institute (R01CA184585). NZ is a Mitch Garber Postdoctoral Fellow. This research was supported by the Flow Cytometry Core Facility of Rutgers Robert Wood Johnson Medical School, a Shared Resource of The Rutgers Cancer Institute of New Jersey (P30CA072720), and a NIH Shared Instrumentation Grant (1 S10 RR025468).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Xia.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foo, T., Tischkowitz, M., Simhadri, S. et al. Compromised BRCA1–PALB2 interaction is associated with breast cancer risk. Oncogene 36, 4161–4170 (2017). https://doi.org/10.1038/onc.2017.46

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.46

This article is cited by

Search

Quick links