Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Transcribing malignancy: transcription-associated genomic instability in cancer

Abstract

Transcription is an essential process in all living cells. However, transcription also sensitises genomic DNA to damage from a number of endogenous sources. Although various mechanisms protect the integrity of DNA during transcription, transcription-associated genomic instability occurs in normal and malignant cells and, if unrepaired, can result in genomic alterations. Numerous studies have implicated genomic alterations found in cancer genomes to transcription. Hence, transcription-associated genomic instability can be considered as a major driver of cancer development. In this review, we summarise the body of knowledge on transcription-associated genomic instability and highlight recent discoveries in the field on both healthy and malignant cells. We also discuss how transcription-associated DNA damage might promote transforming lesions at cell type- and lineage-specific genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Herman RK, Dworkin NB . Effect of gene induction on the rate of mutagenesis by ICR-191 in Escherichia coli. J Bacteriol 1971; 106: 543–550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Datta A, Jinks-Robertson S . Association of increased spontaneous mutation rates with high levels of transcription in yeast. Science 1995; 268: 1616–1619.

    Article  CAS  PubMed  Google Scholar 

  3. Beletskii A, Bhagwat AS . Transcription-induced mutations: increase in C to T mutations in the nontranscribed strand during transcription in Escherichia coli. Proc Natl Acad Sci USA 1996; 93: 13919–13924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lippert MJ, Freedman JA, Barber MA, Jinks-Robertson S . Identification of a distinctive mutation spectrum associated with high levels of transcription in yeast. Mol Cell Biol 2004; 24: 4801–4809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Green P, Ewing B, Miller W, Thomas PJ Program NCS Green ED . Transcription-associated mutational asymmetry in mammalian evolution. Nat Genet 2003; 33: 514–517.

    Article  CAS  PubMed  Google Scholar 

  6. Polak P, Arndt PF . Transcription induces strand-specific mutations at the 5' end of human genes. Genome Res 2008; 18: 1216–1223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ikeda H, Matsumoto T . Transcription promotes recA-independent recombination mediated by DNA-dependent RNA polymerase in Escherichia coli. Proc Natl Acad Sci USA 1979; 76: 4571–4575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Voelkel-Meiman K, Keil RL, Roeder GS . Recombination-stimulating sequences in yeast ribosomal DNA correspond to sequences regulating transcription by RNA polymerase I. Cell 1987; 48: 1071–1079.

    Article  CAS  PubMed  Google Scholar 

  9. Thomas BJ, Rothstein R . Elevated recombination rates in transcriptionally active DNA. Cell 1989; 56: 619–630.

    Article  CAS  PubMed  Google Scholar 

  10. Nickoloff JA . Transcription enhances intrachromosomal homologous recombination in mammalian cells. Mol Cell Biol 1992; 12: 5311–5318.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Gaillard H, Aguilera A . Transcription as a threat to genome integrity. Annu Rev Biochem 2016; 85: 291–317.

    Article  CAS  PubMed  Google Scholar 

  12. Hamperl S, Cimprich KA . The contribution of co-transcriptional RNA:DNA hybrid structures to DNA damage and genome instability. DNA Repair (Amst) 2014; 19: 84–94.

    Article  CAS  Google Scholar 

  13. Lesnik EA, Freier SM . Relative thermodynamic stability of DNA, RNA, and DNA:RNA hybrid duplexes: relationship with base composition and structure. Biochemistry 1995; 34: 10807–10815.

    Article  CAS  PubMed  Google Scholar 

  14. Roy D, Lieber MR . G clustering is important for the initiation of transcription-induced R-loops in vitro, whereas high G density without clustering is sufficient thereafter. Mol Cell Biol 2009; 29: 3124–3133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ginno PA, Lott PL, Christensen HC, Korf I, Chedin F . R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol Cell 2012; 45: 814–825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ginno PA, Lim YW, Lott PL, Korf I, Chedin F . GC skew at the 5' and 3' ends of human genes links R-loop formation to epigenetic regulation and transcription termination. Genome Res 2013; 23: 1590–1600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chan YA, Aristizabal MJ, Lu PY, Luo Z, Hamza A, Kobor MS et al. Genome-wide profiling of yeast DNA:RNA hybrid prone sites with DRIP-chip. PLoS Genet 2014; 10: e1004288.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jenjaroenpun P, Wongsurawat T, Yenamandra SP, Kuznetsov VA . QmRLFS-finder: a model, web server and stand-alone tool for prediction and analysis of R-loop forming sequences. Nucleic Acids Res 2015; 43: W527–W534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Heinaniemi M, Vuorenmaa T, Teppo S, Kaikkonen MU, Bouvy-Liivrand M, Mehtonen J et al. Transcription-coupled genetic instability marks acute lymphoblastic leukemia structural variation hotspots. Elife 2016; 5: e13087.

  20. Boguslawski SJ, Smith DE, Michalak MA, Mickelson KE, Yehle CO, Patterson WL et al. Characterization of monoclonal antibody to DNA.RNA and its application to immunodetection of hybrids. J Immunol Methods 1986; 89: 123–130.

    Article  CAS  PubMed  Google Scholar 

  21. Hraiky C, Raymond MA, Drolet M . RNase H overproduction corrects a defect at the level of transcription elongation during rRNA synthesis in the absence of DNA topoisomerase I in Escherichia coli. J Biol Chem 2000; 275: 11257–11263.

    Article  CAS  PubMed  Google Scholar 

  22. Wahba L, Amon JD, Koshland D, Vuica-Ross M . RNase H and multiple RNA biogenesis factors cooperate to prevent RNA:DNA hybrids from generating genome instability. Mol Cell 2011; 44: 978–988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Santos-Pereira JM, Aguilera A . R loops: new modulators of genome dynamics and function. Nat Rev Genet 2015; 16: 583–597.

    Article  CAS  PubMed  Google Scholar 

  24. Costantino L, Koshland D . The Yin and Yang of R-loop biology. Curr Opin Cell Biol 2015; 34: 39–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sanz LA, Hartono SR, Lim YW, Steyaert S, Rajpurkar A, Ginno PA et al. Prevalent, dynamic, and conserved R-loop structures associate with specific epigenomic signatures in mammals. Mol Cell 2016; 63: 167–178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hartono SR, Korf IF, Chedin F . GC skew is a conserved property of unmethylated CpG island promoters across vertebrates. Nucleic Acids Res 2015; 43: 9729–9741.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Pavri R . R loops in the regulation of antibody gene diversification. Genes 2017; 8: 154.

    Article  PubMed Central  CAS  Google Scholar 

  28. Wiedemann EM, Peycheva M, Pavri R . DNA replication origins in immunoglobulin switch regions regulate class switch recombination in an R-loop-dependent manner. Cell Rep 2016; 17: 2927–2942.

    Article  CAS  PubMed  Google Scholar 

  29. Sollier J, Cimprich KA . Breaking bad: R-loops and genome integrity. Trends Cell Biol 2015; 25: 514–522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Luna R, Gaillard H, Gonzalez-Aguilera C, Aguilera A . Biogenesis of mRNPs: integrating different processes in the eukaryotic nucleus. Chromosoma 2008; 117: 319–331.

    Article  CAS  PubMed  Google Scholar 

  31. Gomez-Gonzalez B, Garcia-Rubio M, Bermejo R, Gaillard H, Shirahige K, Marin A et al. Genome-wide function of THO/TREX in active genes prevents R-loop-dependent replication obstacles. EMBO J 2011; 30: 3106–3119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huertas P, Aguilera A . Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol Cell 2003; 12: 711–721.

    Article  CAS  PubMed  Google Scholar 

  33. Dominguez-Sanchez MS, Barroso S, Gomez-Gonzalez B, Luna R, Aguilera A . Genome instability and transcription elongation impairment in human cells depleted of THO/TREX. PLoS Genet 2011; 7: e1002386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li X, Manley JL . Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability. Cell 2005; 122: 365–378.

    Article  CAS  PubMed  Google Scholar 

  35. Paulsen RD, Soni DV, Wollman R, Hahn AT, Yee MC, Guan A et al. A genome-wide siRNA screen reveals diverse cellular processes and pathways that mediate genome stability. Mol Cell 2009; 35: 228–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stirling PC, Chan YA, Minaker SW, Aristizabal MJ, Barrett I, Sipahimalani P et al. R-loop-mediated genome instability in mRNA cleavage and polyadenylation mutants. Genes Dev 2012; 26: 163–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bonnet A, Grosso AR, Elkaoutari A, Coleno E, Presle A, Sridhara SC et al. Introns protect eukaryotic genomes from transcription-associated genetic instability. Mol Cell 2017; 67: 608–21 e6.

    Article  CAS  PubMed  Google Scholar 

  38. Skourti-Stathaki K, Proudfoot NJ, Gromak N . Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol Cell 2011; 42: 794–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mischo HE, Gomez-Gonzalez B, Grzechnik P, Rondon AG, Wei W, Steinmetz L et al. Yeast Sen1 helicase protects the genome from transcription-associated instability. Mol Cell 2011; 41: 21–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Alzu A, Bermejo R, Begnis M, Lucca C, Piccini D, Carotenuto W et al. Senataxin associates with replication forks to protect fork integrity across RNA-polymerase-II-transcribed genes. Cell 2012; 151: 835–846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sollier J, Stork CT, Garcia-Rubio ML, Paulsen RD, Aguilera A, Cimprich KA . Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability. Mol Cell 2014; 56: 777–785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sridhara SC, Carvalho S, Grosso AR, Gallego-Paez LM, Carmo-Fonseca M, de Almeida SF . Transcription dynamics prevent RNA-mediated genomic instability through SRPK2-dependent DDX23 phosphorylation. Cell Rep 2017; 18: 334–343.

    Article  CAS  PubMed  Google Scholar 

  43. Morales JC, Richard P, Patidar PL, Motea EA, Dang TT, Manley JL et al. XRN2 links transcription termination to DNA damage and replication stress. PLoS Genet 2016; 12: e1006107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Drolet M . Growth inhibition mediated by excess negative supercoiling: the interplay between transcription elongation, R-loop formation and DNA topology. Mol Microbiol 2006; 59: 723–730.

    Article  CAS  PubMed  Google Scholar 

  45. Wang JC . Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 2002; 3: 430–440.

    Article  CAS  PubMed  Google Scholar 

  46. Pommier Y, Sun Y, Huang SN, Nitiss JL . Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat Rev Mol Cell Biol 2016; 17: 703–721.

    Article  CAS  PubMed  Google Scholar 

  47. Naughton C, Avlonitis N, Corless S, Prendergast JG, Mati IK, Eijk PP et al. Transcription forms and remodels supercoiling domains unfolding large-scale chromatin structures. Nat Struct Mol Biol 2013; 20: 387–395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. El Hage A, French SL, Beyer AL, Tollervey D . Loss of topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis. Genes Dev 2010; 24: 1546–1558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang Y, McBride KM, Hensley S, Lu Y, Chedin F, Bedford MT . Arginine methylation facilitates the recruitment of TOP3B to chromatin to prevent R loop accumulation. Mol Cell 2014; 53: 484–497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vijayraghavan S, Tsai FL, Schwacha A . A checkpoint-related function of the MCM replicative helicase is required to avert accumulation of RNA:DNA hybrids during S-phase and ensuing DSBs during G2/M. PLoS Genet 2016; 12: e1006277.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Tuduri S, Crabbe L, Conti C, Tourriere H, Holtgreve-Grez H, Jauch A et al. Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription. Nat Cell Biol 2009; 11: 1315–1324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li M, Pokharel S, Wang JT, Xu X, Liu Y . RECQ5-dependent SUMOylation of DNA topoisomerase I prevents transcription-associated genome instability. Nat Commun 2015; 6: 6720.

    Article  CAS  PubMed  Google Scholar 

  53. Lippert MJ, Kim N, Cho JE, Larson RP, Schoenly NE, O'Shea SH et al. Role for topoisomerase 1 in transcription-associated mutagenesis in yeast. Proc Natl Acad Sci USA 2011; 108: 698–703.

    Article  CAS  PubMed  Google Scholar 

  54. Takahashi T, Burguiere-Slezak G, Van der Kemp PA, Boiteux S . Topoisomerase 1 provokes the formation of short deletions in repeated sequences upon high transcription in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 2011; 108: 692–697.

    Article  CAS  PubMed  Google Scholar 

  55. Ashour ME, Atteya R, El-Khamisy SF . Topoisomerase-mediated chromosomal break repair: an emerging player in many games. Nat Rev Cancer 2015; 15: 137–151.

    Article  CAS  PubMed  Google Scholar 

  56. Marteijn JA, Lans H, Vermeulen W, Hoeijmakers JH . Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell Biol 2014; 15: 465–481.

    Article  CAS  PubMed  Google Scholar 

  57. Stork CT, Bocek M, Crossley MP, Sollier J, Sanz LA, Chedin F et al. Co-transcriptional R-loops are the main cause of estrogen-induced DNA damage. Elife 2016; 5: e17548.

  58. Lin Y, Wilson JH . Transcription-induced CAG repeat contraction in human cells is mediated in part by transcription-coupled nucleotide excision repair. Mol Cell Biol 2007; 27: 6209–6217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tous C, Aguilera A . Impairment of transcription elongation by R-loops in vitro. Biochem Biophys Res Commun 2007; 360: 428–432.

    Article  CAS  PubMed  Google Scholar 

  60. Cortez D . Preventing replication fork collapse to maintain genome integrity. DNA Repair (Amst) 2015; 32: 149–157.

    Article  CAS  Google Scholar 

  61. Macheret M, Halazonetis TD . DNA replication stress as a hallmark of cancer. Annu Rev Pathol 2015; 10: 425–448.

    Article  CAS  PubMed  Google Scholar 

  62. Bermejo R, Lai MS, Foiani M . Preventing replication stress to maintain genome stability: resolving conflicts between replication and transcription. Mol Cell 2012; 45: 710–718.

    Article  CAS  PubMed  Google Scholar 

  63. Garcia-Muse T, Aguilera A . Transcription-replication conflicts: how they occur and how they are resolved. Nat Rev Mol Cell Biol 2016; 17: 553–563.

    Article  CAS  PubMed  Google Scholar 

  64. Chang EY, Stirling PC . Replication fork protection factors controlling R-loop bypass and suppression. Genes (Basel) 2017; 8: 33.

    Article  CAS  Google Scholar 

  65. Helmrich A, Ballarino M, Tora L . Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. Mol Cell 2011; 44: 966–977.

    Article  CAS  PubMed  Google Scholar 

  66. Barlow JH, Faryabi RB, Callen E, Wong N, Malhowski A, Chen HT et al. Identification of early replicating fragile sites that contribute to genome instability. Cell 2013; 152: 620–632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Urban V, Dobrovolna J, Huhn D, Fryzelkova J, Bartek J, Janscak P . RECQ5 helicase promotes resolution of conflicts between replication and transcription in human cells. J Cell Biol 2016; 214: 401–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wellinger RE, Prado F, Aguilera A . Replication fork progression is impaired by transcription in hyperrecombinant yeast cells lacking a functional THO complex. Mol Cell Biol 2006; 26: 3327–3334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gan W, Guan Z, Liu J, Gui T, Shen K, Manley JL et al. R-loop-mediated genomic instability is caused by impairment of replication fork progression. Genes Dev 2011; 25: 2041–2056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hamperl S, Bocek MJ, Saldivar JC, Swigut T, Cimprich KA . Transcription-replication conflict orientation modulates R-loop levels and activates distinct DNA damage responses. Cell 2017; 170: 774–86 e19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lang KS, Hall AN, Merrikh CN, Ragheb M, Tabakh H, Pollock AJ et al. Replication-transcription conflicts generate R-loops that orchestrate bacterial stress survival and pathogenesis. Cell 2017; 170: 787–99 e18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hill SJ, Mordes DA, Cameron LA, Neuberg DS, Landini S, Eggan K et al. Two familial ALS proteins function in prevention/repair of transcription-associated DNA damage. Proc Natl Acad Sci USA 2016; 113: E7701–E7709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rabbitts TH, Forster A, Larson R, Nathan P . Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t(12;16) in malignant liposarcoma. Nat Genet 1993; 4: 175–180.

    Article  CAS  PubMed  Google Scholar 

  74. Shing DC, McMullan DJ, Roberts P, Smith K, Chin SF, Nicholson J et al. FUS/ERG gene fusions in Ewing's tumors. Cancer Res 2003; 63: 4568–4576.

    CAS  PubMed  Google Scholar 

  75. Buchanan J, Tirado CA . A t(16;21)(p11;q22) in acute myeloid leukemia (AML) resulting in fusion of the FUS/TLS and ERG genes: a review of the literature. J Assoc Genet Technol 2016; 42: 24–33.

    PubMed  Google Scholar 

  76. Bhatia V, Barroso SI, Garcia-Rubio ML, Tumini E, Herrera-Moyano E, Aguilera A . BRCA2 prevents R-loop accumulation and associates with TREX-2 mRNA export factor PCID2. Nature 2014; 511: 362–365.

    Article  CAS  PubMed  Google Scholar 

  77. Hatchi E, Skourti-Stathaki K, Ventz S, Pinello L, Yen A, Kamieniarz-Gdula K et al. BRCA1 recruitment to transcriptional pause sites is required for R-loop-driven DNA damage repair. Mol Cell 2015; 57: 636–647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yager JD, Davidson NE . Estrogen carcinogenesis in breast cancer. N Engl J Med 2006; 354: 270–282.

    Article  CAS  PubMed  Google Scholar 

  79. Williamson LM, Lees-Miller SP . Estrogen receptor alpha-mediated transcription induces cell cycle-dependent DNA double-strand breaks. Carcinogenesis 2011; 32: 279–285.

    Article  CAS  PubMed  Google Scholar 

  80. Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 2006; 444: 638–642.

    Article  CAS  PubMed  Google Scholar 

  81. Dominguez-Sola D, Ying CY, Grandori C, Ruggiero L, Chen B, Li M et al. Non-transcriptional control of DNA replication by c-Myc. Nature 2007; 448: 445–451.

    Article  CAS  PubMed  Google Scholar 

  82. Lin CY, Loven J, Rahl PB, Paranal RM, Burge CB, Bradner JE et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell 2012; 151: 56–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nie Z, Hu G, Wei G, Cui K, Yamane A, Resch W et al. c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell 2012; 151: 68–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Johnson SA, Mandavia N, Wang HD, Johnson DL . Transcriptional regulation of the TATA-binding protein by Ras cellular signaling. Mol Cell Biol 2000; 20: 5000–5009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kotsantis P, Silva LM, Irmscher S, Jones RM, Folkes L, Gromak N et al. Increased global transcription activity as a mechanism of replication stress in cancer. Nat Commun 2016; 7: 13087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cox AD, Fesik SW, Kimmelman AC, Luo J, Der CJ . Drugging the undruggable RAS: mission possible? Nat Rev Drug Discov 2014; 13: 828–851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jones RM, Mortusewicz O, Afzal I, Lorvellec M, Garcia P, Helleday T et al. Increased replication initiation and conflicts with transcription underlie cyclin E-induced replication stress. Oncogene 2013; 32: 3744–3753.

    Article  CAS  PubMed  Google Scholar 

  88. Boulianne B, Robinson ME, May PC, Castellano L, Blighe K, Thomas J et al. Lineage-specific genes are prominent DNA damage hotspots during leukemic transformation of B cell precursors. Cell Rep 2017; 18: 1687–1698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Adelman K, Lis JT . Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat Rev Genet 2012; 13: 720–731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ju BG, Rosenfeld MG . A breaking strategy for topoisomerase IIbeta/PARP-1-dependent regulated transcription. Cell Cycle 2006; 5: 2557–2560.

    Article  CAS  PubMed  Google Scholar 

  91. Calderwood SK . A critical role for topoisomerase IIb and DNA double strand breaks in transcription. Transcription 2016; 7: 75–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yang X, Li W, Prescott ED, Burden SJ, Wang JC . DNA topoisomerase IIbeta and neural development. Science 2000; 287: 131–134.

    Article  CAS  PubMed  Google Scholar 

  93. Lyu YL, Lin CP, Azarova AM, Cai L, Wang JC, Liu LF . Role of topoisomerase IIbeta in the expression of developmentally regulated genes. Mol Cell Biol 2006; 26: 7929–7941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gomez-Herreros F, Schuurs-Hoeijmakers JH, McCormack M, Greally MT, Rulten S, Romero-Granados R et al. TDP2 protects transcription from abortive topoisomerase activity and is required for normal neural function. Nat Genet 2014; 46: 516–521.

    Article  CAS  PubMed  Google Scholar 

  95. Madabhushi R, Gao F, Pfenning AR, Pan L, Yamakawa S, Seo J et al. Activity-induced DNA breaks govern the expression of neuronal early-response genes. Cell 2015; 161: 1592–1605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gomez-Herreros F, Zagnoli-Vieira G, Ntai I, Martinez-Macias MI, Anderson RM, Herrero-Ruiz A et al. TDP2 suppresses chromosomal translocations induced by DNA topoisomerase II during gene transcription. Nat Commun 2017; 8: 233.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Ju BG, Lunyak VV, Perissi V, Garcia-Bassets I, Rose DW, Glass CK et al. A topoisomerase IIbeta-mediated dsDNA break required for regulated transcription. Science 2006; 312: 1798–1802.

    Article  CAS  PubMed  Google Scholar 

  98. Healy S, Khan P, Davie JR . Immediate early response genes and cell transformation. Pharmacol Ther 2013; 137: 64–77.

    Article  CAS  PubMed  Google Scholar 

  99. Bunch H, Lawney BP, Lin YF, Asaithamby A, Murshid A, Wang YE et al. Transcriptional elongation requires DNA break-induced signalling. Nat Commun 2015; 6: 10191.

    Article  CAS  PubMed  Google Scholar 

  100. Bunch H, Zheng X, Burkholder A, Dillon ST, Motola S, Birrane G et al. TRIM28 regulates RNA polymerase II promoter-proximal pausing and pause release. Nat Struct Mol Biol 2014; 21: 876–883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Trotter KW, King HA, Archer TK . Glucocorticoid receptor transcriptional activation via the BRG1-dependent recruitment of TOP2beta and Ku70/86. Mol Cell Biol 2015; 35: 2799–2817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Haffner MC, Aryee MJ, Toubaji A, Esopi DM, Albadine R, Gurel B et al. Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat Genet 2010; 42: 668–675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Canela A, Maman Y, Jung S, Wong N, Callen E, Day A et al. Genome organization drives chromosome fragility. Cell 2017; 170: 507–21 e18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chaudhuri J, Tian M, Khuong C, Chua K, Pinaud E, Alt FW . Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 2003; 422: 726–730.

    Article  CAS  PubMed  Google Scholar 

  105. Parsa JY, Ramachandran S, Zaheen A, Nepal RM, Kapelnikov A, Belcheva A et al. Negative supercoiling creates single-stranded patches of DNA that are substrates for AID-mediated mutagenesis. PLoS Genet 2012; 8: e1002518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yu K, Chedin F, Hsieh CL, Wilson TE, Lieber MR . R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat Immunol 2003; 4: 442–451.

    Article  CAS  PubMed  Google Scholar 

  107. Chiarle R, Zhang Y, Frock RL, Lewis SM, Molinie B, Ho YJ et al. Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell 2011; 147: 107–119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Klein IA, Resch W, Jankovic M, Oliveira T, Yamane A, Nakahashi H et al. Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes. Cell 2011; 147: 95–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yamane A, Resch W, Kuo N, Kuchen S, Li Z, Sun HW et al. Deep-sequencing identification of the genomic targets of the cytidine deaminase AID and its cofactor RPA in B lymphocytes. Nat Immunol 2011; 12: 62–69.

    Article  CAS  PubMed  Google Scholar 

  110. Meng FL, Du Z Federation A Hu J, Wang Q, Kieffer-Kwon KR et al. Convergent transcription at intragenic super-enhancers targets AID-initiated genomic instability. Cell 2014; 159: 1538–1548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hobson DJ, Wei W, Steinmetz LM, Svejstrup JQ . RNA polymerase II collision interrupts convergent transcription. Mol Cell 2012; 48: 365–374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Pavri R, Gazumyan A, Jankovic M, Di Virgilio M, Klein I, Ansarah-Sobrinho C et al. Activation-induced cytidine deaminase targets DNA at sites of RNA polymerase II stalling by interaction with Spt5. Cell 2010; 143: 122–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wang Q, Oliveira T, Jankovic M, Silva IT, Hakim O, Yao K et al. Epigenetic targeting of activation-induced cytidine deaminase. Proc Natl Acad Sci USA 2014; 111: 18667–18672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Qian J, Wang Q, Dose M, Pruett N, Kieffer-Kwon KR, Resch W et al. B cell super-enhancers and regulatory clusters recruit AID tumorigenic activity. Cell 2014; 159: 1524–1537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Taylor BJ, Wu YL, Rada C . Active RNAP pre-initiation sites are highly mutated by cytidine deaminases in yeast, with AID targeting small RNA genes. Elife 2014; 3: e03553.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Lada AG, Kliver SF, Dhar A, Polev DE, Masharsky AE, Rogozin IB et al. Disruption of transcriptional coactivator Sub1 leads to genome-wide re-distribution of clustered mutations induced by APOBEC in active yeast genes. PLoS Genet 2015; 11: e1005217.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Hoopes JI, Cortez LM, Mertz TM, Malc EP, Mieczkowski PA, Roberts SA . APOBEC3A and APOBEC3B preferentially deaminate the lagging strand template during DNA replication. Cell Rep 2016; 14: 1273–1282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kazanov MD, Roberts SA, Polak P, Stamatoyannopoulos J, Klimczak LJ, Gordenin DA et al. APOBEC-induced cancer mutations are uniquely enriched in early-replicating, gene-dense, and active chromatin regions. Cell Rep 2015; 13: 1103–1109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kuppers R . Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer 2005; 5: 251–262.

    Article  PubMed  CAS  Google Scholar 

  120. Robbiani DF, Bothmer A, Callen E, Reina-San-Martin B, Dorsett Y, Difilippantonio S et al. AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell 2008; 135: 1028–1038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Migliazza A, Martinotti S, Chen W, Fusco C, Ye BH, Knowles DM et al. Frequent somatic hypermutation of the 5' noncoding region of the BCL6 gene in B-cell lymphoma. Proc Natl Acad Sci USA 1995; 92: 12520–12524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Pasqualucci L, Migliazza A, Fracchiolla N, William C, Neri A, Baldini L et al. BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc Natl Acad Sci USA 1998; 95: 11816–11821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Peng HZ, Du MQ, Koulis A, Aiello A, Dogan A, Pan LX et al. Nonimmunoglobulin gene hypermutation in germinal center B cells. Blood 1999; 93: 2167–2172.

    Article  CAS  PubMed  Google Scholar 

  124. Muschen M, Re D, Jungnickel B, Diehl V, Rajewsky K, Kuppers R . Somatic mutation of the CD95 gene in human B cells as a side-effect of the germinal center reaction. J Exp Med 2000; 192: 1833–1840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gordon MS, Kanegai CM, Doerr JR, Wall R . Somatic hypermutation of the B cell receptor genes B29 (Igbeta, CD79b) and mb1 (Igalpha, CD79a). Proc Natl Acad Sci USA 2003; 100: 4126–4131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Pasqualucci L, Neumeister P, Goossens T, Nanjangud G, Chaganti RS, Kuppers R et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature 2001; 412: 341–346.

    Article  CAS  PubMed  Google Scholar 

  127. Liu M, Duke JL, Richter DJ, Vinuesa CG, Goodnow CC, Kleinstein SH et al. Two levels of protection for the B cell genome during somatic hypermutation. Nature 2008; 451: 841–845.

    Article  CAS  PubMed  Google Scholar 

  128. Robbiani DF, Bunting S, Feldhahn N, Bothmer A, Camps J, Deroubaix S et al. AID produces DNA double-strand breaks in non-Ig genes and mature B cell lymphomas with reciprocal chromosome translocations. Mol Cell 2009; 36: 631–641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ramiro AR, Jankovic M, Eisenreich T, Difilippantonio S, Chen-Kiang S, Muramatsu M et al. AID is required for c-myc/IgH chromosome translocations in vivo. Cell 2004; 118: 431–438.

    Article  CAS  PubMed  Google Scholar 

  130. Feldhahn N, Henke N, Melchior K, Duy C, Soh BN, Klein F et al. Activation-induced cytidine deaminase acts as a mutator in BCR-ABL1-transformed acute lymphoblastic leukemia cells. J Exp Med 2007; 204: 1157–1166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Swaminathan S, Klemm L, Park E, Papaemmanuil E, Ford A, Kweon SM et al. Mechanisms of clonal evolution in childhood acute lymphoblastic leukemia. Nat Immunol 2015; 16: 766–774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Tsai AG, Lu H, Raghavan SC, Muschen M, Hsieh CL, Lieber MR . Human chromosomal translocations at CpG sites and a theoretical basis for their lineage and stage specificity. Cell 2008; 135: 1130–1142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Papaemmanuil E, Rapado I, Li Y, Potter NE, Wedge DC, Tubio J et al. RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia. Nat Genet 2014; 46: 116–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Nonaka T, Toda Y, Hiai H, Uemura M, Nakamura M, Yamamoto N et al. Involvement of activation-induced cytidine deaminase in skin cancer development. J Clin Invest 2016; 126: 1367–1382.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Roberts SA, Lawrence MS, Klimczak LJ, Grimm SA, Fargo D, Stojanov P et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat Genet 2013; 45: 970–976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Burns MB, Lackey L, Carpenter MA, Rathore A, Land AM, Leonard B et al. APOBEC3B is an enzymatic source of mutation in breast cancer. Nature 2013; 494: 366–370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Burns MB, Temiz NA, Harris RS . Evidence for APOBEC3B mutagenesis in multiple human cancers. Nat Genet 2013; 45: 977–983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Chan K, Roberts SA, Klimczak LJ, Sterling JF, Saini N, Malc EP et al. An APOBEC3A hypermutation signature is distinguishable from the signature of background mutagenesis by APOBEC3B in human cancers. Nat Genet 2015; 47: 1067–1072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Mussil B, Suspene R, Aynaud MM, Gauvrit A, Vartanian JP, Wain-Hobson S . Human APOBEC3A isoforms translocate to the nucleus and induce DNA double strand breaks leading to cell stress and death. PLoS ONE 2013; 8: e73641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lensing SV, Marsico G, Hansel-Hertsch R, Lam EY, Tannahill D, Balasubramanian S . DSBCapture: in situ capture and sequencing of DNA breaks. Nat Methods 2016; 13: 855–857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wei PC, Chang AN, Kao J, Du Z, Meyers RM, Alt FW et al. Long neural genes harbor recurrent DNA break clusters in neural stem/progenitor cells. Cell 2016; 164: 644–655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Imielinski M, Guo G, Meyerson M . Insertions and deletions target lineage-defining genes in human cancers. Cell 2017; 168: 460–72 e14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Garraway LA, Lander ES . Lessons from the cancer genome. Cell 2013; 153: 17–37.

    Article  CAS  PubMed  Google Scholar 

  144. Tenen DG . Disruption of differentiation in human cancer: AML shows the way. Nat Rev Cancer 2003; 3: 89–101.

    Article  CAS  PubMed  Google Scholar 

  145. Wang J, Sun Q, Morita Y, Jiang H, Gross A, Lechel A et al. A differentiation checkpoint limits hematopoietic stem cell self-renewal in response to DNA damage. Cell 2012; 148: 1001–1014.

    Article  CAS  PubMed  Google Scholar 

  146. Santos MA, Faryabi RB, Ergen AV, Day AM, Malhowski A, Canela A et al. DNA-damage-induced differentiation of leukaemic cells as an anti-cancer barrier. Nature 2014; 514: 107–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Fleenor CJ, Rozhok AI, Zaberezhnyy V, Mathew D, Kim J, Tan AC et al. Contrasting roles for C/EBPalpha and Notch in irradiation-induced multipotent hematopoietic progenitor cell defects. Stem Cells 2015; 33: 1345–1358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Mandal PK, Rossi DJ . DNA-damage-induced differentiation in hematopoietic stem cells. Cell 2012; 148: 847–848.

    Article  CAS  PubMed  Google Scholar 

  149. Pabst T, Mueller BU, Zhang P, Radomska HS, Narravula S, Schnittger S et al. Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/EBPalpha), in acute myeloid leukemia. Nat Genet 2001; 27: 263–270.

    Article  CAS  PubMed  Google Scholar 

  150. Schwieger M, Lohler J, Fischer M, Herwig U, Tenen DG, Stocking C . A dominant-negative mutant of C/EBPalpha, associated with acute myeloid leukemias, inhibits differentiation of myeloid and erythroid progenitors of man but not mouse. Blood 2004; 103: 2744–2752.

    Article  CAS  PubMed  Google Scholar 

  151. Leroy H, Roumier C, Huyghe P, Biggio V, Fenaux P, Preudhomme C . CEBPA point mutations in hematological malignancies. Leukemia 2005; 19: 329–334.

    Article  CAS  PubMed  Google Scholar 

  152. Rosenbauer F, Tenen DG . Transcription factors in myeloid development: balancing differentiation with transformation. Nat Rev Immunol 2007; 7: 105–117.

    Article  CAS  PubMed  Google Scholar 

  153. Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 2007; 446: 758–764.

    Article  CAS  PubMed  Google Scholar 

  154. Mullighan CG, Miller CB, Radtke I, Phillips LA, Dalton J, Ma J et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 2008; 453: 110–114.

    Article  CAS  PubMed  Google Scholar 

  155. Mullighan CG, Su X, Zhang J, Radtke I, Phillips LA, Miller CB et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med 2009; 360: 470–480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhang J, Mullighan CG, Harvey RC, Wu G, Chen X, Edmonson M et al. Key pathways are frequently mutated in high-risk childhood acute lymphoblastic leukemia: a report from the Children's Oncology Group. Blood 2011; 118: 3080–3087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Roberts KG, Morin RD, Zhang J, Hirst M, Zhao Y, Su X et al. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell 2012; 22: 153–166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Rui L, Schmitz R, Ceribelli M, Staudt LM . Malignant pirates of the immune system. Nat Immunol 2011; 12: 933–940.

    Article  CAS  PubMed  Google Scholar 

  159. Feldhahn N, Klein F, Mooster JL, Hadweh P, Sprangers M, Wartenberg M et al. Mimicry of a constitutively active pre-B cell receptor in acute lymphoblastic leukemia cells. J Exp Med 2005; 201: 1837–1852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Shochat C, Tal N, Bandapalli OR, Palmi C, Ganmore I, te Kronnie G et al. Gain-of-function mutations in interleukin-7 receptor-alpha (IL7R) in childhood acute lymphoblastic leukemias. J Exp Med 2011; 208: 901–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Zenatti PP, Ribeiro D, Li W, Zuurbier L, Silva MC, Paganin M et al. Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia. Nat Genet 2011; 43: 932–939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Nutt SL, Urbanek P, Rolink A, Busslinger M . Essential functions of Pax5 (BSAP) in pro-B cell development: difference between fetal and adult B lymphopoiesis and reduced V-to-DJ recombination at the IgH locus. Genes Dev 1997; 11: 476–491.

    Article  CAS  PubMed  Google Scholar 

  163. Heltemes-Harris LM, Willette MJ, Ramsey LB, Qiu YH, Neeley ES, Zhang N et al. Ebf1 or Pax5 haploinsufficiency synergizes with STAT5 activation to initiate acute lymphoblastic leukemia. J Exp Med 2011; 208: 1135–1149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Liu GJ, Cimmino L, Jude JG, Hu Y, Witkowski MT, McKenzie MD et al. Pax5 loss imposes a reversible differentiation block in B-progenitor acute lymphoblastic leukemia. Genes Dev 2014; 28: 1337–1350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Chan LN, Chen Z, Braas D, Lee JW, Xiao G, Geng H et al. Metabolic gatekeeper function of B-lymphoid transcription factors. Nature 2017; 542: 479–483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. De Keersmaecker K, Real PJ, Gatta GD, Palomero T, Sulis ML, Tosello V et al. The TLX1 oncogene drives aneuploidy in T cell transformation. Nat Med 2010; 16: 1321–1327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Gutierrez A, Kentsis A, Sanda T, Holmfeldt L, Chen SC, Zhang J et al. The BCL11B tumor suppressor is mutated across the major molecular subtypes of T-cell acute lymphoblastic leukemia. Blood 2011; 118: 4169–4173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ha VL, Luong A, Li F, Casero D, Malvar J, Kim YM et al. The T-ALL related gene BCL11B regulates the initial stages of human T-cell differentiation. Leukemia 2017, e-pub ahead of print 14 March 2017 doi:10.1038/leu.2017.70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. McCormack MP, Young LF, Vasudevan S, de Graaf CA, Codrington R, Rabbitts TH et al. The Lmo2 oncogene initiates leukemia in mice by inducing thymocyte self-renewal. Science 2010; 327: 879–883.

    Article  CAS  PubMed  Google Scholar 

  170. Gutierrez A, Sanda T, Ma W, Zhang J, Grebliunaite R, Dahlberg S et al. Inactivation of LEF1 in T-cell acute lymphoblastic leukemia. Blood 2010; 115: 2845–2851.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 2002; 1: 75–87.

    Article  CAS  PubMed  Google Scholar 

  172. Van Vlierberghe P, Ferrando A . The molecular basis of T cell acute lymphoblastic leukemia. J Clin Invest 2012; 122: 3398–3406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Weng AP, Ferrando AA, Lee W, Morris JPt, Silverman LB, Sanchez-Irizarry C et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306: 269–271.

    Article  CAS  PubMed  Google Scholar 

  174. De Silva NS, Klein U . Dynamics of B cells in germinal centres. Nat Rev Immunol 2015; 15: 137–148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Nutt SL, Hodgkin PD, Tarlinton DM, Corcoran LM . The generation of antibody-secreting plasma cells. Nat Rev Immunol 2015; 15: 160–171.

    Article  CAS  PubMed  Google Scholar 

  176. Phan RT, Dalla-Favera R . The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature 2004; 432: 635–639.

    Article  CAS  PubMed  Google Scholar 

  177. Phan RT, Saito M, Basso K, Niu H, Dalla-Favera R . BCL6 interacts with the transcription factor Miz-1 to suppress the cyclin-dependent kinase inhibitor p21 and cell cycle arrest in germinal center B cells. Nat Immunol 2005; 6: 1054–1060.

    Article  CAS  PubMed  Google Scholar 

  178. Ranuncolo SM, Polo JM, Dierov J, Singer M, Kuo T, Greally J et al. Bcl-6 mediates the germinal center B cell phenotype and lymphomagenesis through transcriptional repression of the DNA-damage sensor ATR. Nat Immunol 2007; 8: 705–714.

    Article  CAS  PubMed  Google Scholar 

  179. Ye BH, Chaganti S, Chang CC, Niu H, Corradini P, Chaganti RS et al. Chromosomal translocations cause deregulated BCL6 expression by promoter substitution in B cell lymphoma. EMBO J 1995; 14: 6209–6217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Chen W, Iida S, Louie DC, Dalla-Favera R, Chaganti RS . Heterologous promoters fused to BCL6 by chromosomal translocations affecting band 3q27 cause its deregulated expression during B-cell differentiation. Blood 1998; 91: 603–607.

    Article  CAS  PubMed  Google Scholar 

  181. Wang X, Li Z, Naganuma A, Ye BH . Negative autoregulation of BCL-6 is bypassed by genetic alterations in diffuse large B cell lymphomas. Proc Natl Acad Sci USA 2002; 99: 15018–15023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Pasqualucci L, Migliazza A, Basso K, Houldsworth J, Chaganti RS, Dalla-Favera R . Mutations of the BCL6 proto-oncogene disrupt its negative autoregulation in diffuse large B-cell lymphoma. Blood 2003; 101: 2914–2923.

    Article  CAS  PubMed  Google Scholar 

  183. Iqbal J, Greiner TC, Patel K, Dave BJ, Smith L, Ji J et al. Distinctive patterns of BCL6 molecular alterations and their functional consequences in different subgroups of diffuse large B-cell lymphoma. Leukemia 2007; 21: 2332–2343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Basso K, Dalla-Favera R . Roles of BCL6 in normal and transformed germinal center B cells. Immunol Rev 2012; 247: 172–183.

    Article  PubMed  CAS  Google Scholar 

  185. Tam W, Gomez M, Chadburn A, Lee JW, Chan WC, Knowles DM . Mutational analysis of PRDM1 indicates a tumor-suppressor role in diffuse large B-cell lymphomas. Blood 2006; 107: 4090–4100.

    Article  CAS  PubMed  Google Scholar 

  186. Mandelbaum J, Bhagat G, Tang H, Mo T, Brahmachary M, Shen Q et al. BLIMP1 is a tumor suppressor gene frequently disrupted in activated B cell-like diffuse large B cell lymphoma. Cancer Cell 2010; 18: 568–579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Pasqualucci L, Compagno M, Houldsworth J, Monti S, Grunn A, Nandula SV et al. Inactivation of the PRDM1/BLIMP1 gene in diffuse large B cell lymphoma. J Exp Med 2006; 203: 311–317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Leung-Hagesteijn C, Erdmann N, Cheung G, Keats JJ, Stewart AK, Reece DE et al. Xbp1s-negative tumor B cells and pre-plasmablasts mediate therapeutic proteasome inhibitor resistance in multiple myeloma. Cancer Cell 2013; 24: 289–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Shaffer AL, Emre NC, Lamy L, Ngo VN, Wright G, Xiao W et al. IRF4 addiction in multiple myeloma. Nature 2008; 454: 226–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Havelange V, Pekarsky Y, Nakamura T, Palamarchuk A, Alder H, Rassenti L et al. IRF4 mutations in chronic lymphocytic leukemia. Blood 2011; 118: 2827–2829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Lohr JG, Stojanov P, Carter SL, Cruz-Gordillo P, Lawrence MS, Auclair D et al. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell 2014; 25: 91–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Yip KW, Reed JC . Bcl-2 family proteins and cancer. Oncogene 2008; 27: 6398–6406.

    Article  CAS  PubMed  Google Scholar 

  193. Schuetz JM, Johnson NA, Morin RD, Scott DW, Tan K, Ben-Nierah S et al. BCL2 mutations in diffuse large B-cell lymphoma. Leukemia 2012; 26: 1383–1390.

    Article  CAS  PubMed  Google Scholar 

  194. Cheung HW, Cowley GS, Weir BA, Boehm JS, Rusin S, Scott JA et al. Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer. Proc Natl Acad Sci USA 2011; 108: 12372–12377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Di Palma T, Lucci V, de Cristofaro T, Filippone MG, Zannini M . A role for PAX8 in the tumorigenic phenotype of ovarian cancer cells. BMC Cancer 2014; 14: 292.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Garraway LA, Widlund HR, Rubin MA, Getz G, Berger AJ, Ramaswamy S et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 2005; 436: 117–122.

    Article  CAS  PubMed  Google Scholar 

  197. Gontan C, de Munck A, Vermeij M, Grosveld F, Tibboel D, Rottier R . Sox2 is important for two crucial processes in lung development: branching morphogenesis and epithelial cell differentiation. Dev Biol 2008; 317: 296–309.

    Article  CAS  PubMed  Google Scholar 

  198. Bass AJ, Watanabe H, Mermel CH, Yu S, Perner S, Verhaak RG et al. SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet 2009; 41: 1238–1242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Mu P, Zhang Z, Benelli M, Karthaus WR, Hoover E, Chen CC et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science 2017; 355: 84–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Hsieh HJ, Peng G . Cellular responses to replication stress: Implications in cancer biology and therapy. DNA Repair (Amst) 2017; 49: 9–20.

    Article  CAS  Google Scholar 

  201. Orlovetskie N, Serruya R, Abboud-Jarrous G, Jarrous N . Targeted inhibition of WRN helicase, replication stress and cancer. Biochim Biophys Acta 2017; 1867: 42–48.

    CAS  Google Scholar 

  202. Puigvert JC, Sanjiv K, Helleday T . Targeting DNA repair, DNA metabolism and replication stress as anti-cancer strategies. FEBS J 2016; 283: 232–245.

    Article  CAS  PubMed  Google Scholar 

  203. Coombs CC, Tavakkoli M, Tallman MS . Acute promyelocytic leukemia: where did we start, where are we now, and the future. Blood Cancer J 2015; 5: e304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Cerchietti LC, Ghetu AF, Zhu X, Da Silva GF, Zhong S, Matthews M et al. A small-molecule inhibitor of BCL6 kills DLBCL cells in vitro and in vivo. Cancer Cell 2010; 17: 400–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Cardenas MG, Yu W, Beguelin W, Teater MR, Geng H, Goldstein RL et al. Rationally designed BCL6 inhibitors target activated B cell diffuse large B cell lymphoma. J Clin Invest 2016; 126: 3351–3362.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Feldhahn.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulianne, B., Feldhahn, N. Transcribing malignancy: transcription-associated genomic instability in cancer. Oncogene 37, 971–981 (2018). https://doi.org/10.1038/onc.2017.402

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.402

This article is cited by

Search

Quick links