Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Anti-leukemic activity of microRNA-26a in a chronic lymphocytic leukemia mouse model

Abstract

Dysregulation of microRNAs (miRNAs) plays an important role in the pathogenesis of chronic lymphocytic leukemia (CLL). The Eμ-TCL1 transgenic mouse develops a form of leukemia that is similar to the aggressive type of human B-CLL, and this valuable model has been widely used for testing novel therapeutic approaches. Here, we adopted this model to investigate the potential effects of miR-26a, miR-130an and antimiR-155 in CLL therapy. Improved delivery of miRNA molecules into CLL cells was obtained by developing a novel system based on lipid nanoparticles conjugated with an anti-CD38 monoclonal antibody. This methodology has proven to be highly effective in delivering miRNA molecules into leukemic cells. Short- and long-term experiments showed that miR-26a, miR-130a and anti-miR-155 increased apoptosis after in vitro and in vivo treatment. Of this miRNA panel, miR-26a was the most effective in reducing leukemic cell expansion. Following long-term treatment, apoptosis was readily detectable by analyzing cleavage of PARP and caspase-7. These effects could be directly attributed to miR-26a, as confirmed by significant downregulation of its proven targets, namely cyclin-dependent kinase 6 and Mcl1. The results of this study are relevant to two distinct areas. The first is related to the design of a technical strategy and to the selection of CD38 as a molecular target on CLL cells, both consenting efficient and specific intracellular transfer of miRNA. The original scientific finding inferred from the above approach is that miR-26a can elicit in vivo anti-leukemic activities mediated by increased apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Chiorazzi N, Rai KR, Ferrarini M . Chronic lymphocytic leukemia. N Engl j med 2005; 352: 804–815.

    Article  CAS  PubMed  Google Scholar 

  2. Zenz T, Mertens D, Kuppers R, Dohner H, Stilgenbauer S . From pathogenesis to treatment of chronic lymphocytic leukaemia. Nat rev Cancer 2010; 10: 37–50.

    Article  CAS  PubMed  Google Scholar 

  3. Chiorazzi N, Hatzi K, Albesiano E . B-cell chronic lymphocytic leukemia, a clonal disease of B lymphocytes with receptors that vary in specificity for (auto)antigens. Ann NY Acad Sci 2005; 1062: 1–12.

    Article  CAS  PubMed  Google Scholar 

  4. Grever MR, Lucas DM, Dewald GW, Neuberg DS, Reed JC, Kitada S et al. Comprehensive assessment of genetic and molecular features predicting outcome in patients with chronic lymphocytic leukemia: results from the US Intergroup Phase III Trial E2997. J clin oncol 2007; 25: 799–804.

    Article  CAS  PubMed  Google Scholar 

  5. Binet JL, Auquier A, Dighiero G, Chastang C, Piguet H, Goasguen J et al. A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis. Cancer 1981; 48: 198–206.

    Article  CAS  PubMed  Google Scholar 

  6. Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999; 94: 1840–1847.

    Article  CAS  PubMed  Google Scholar 

  7. Wiestner A, Rosenwald A, Barry TS, Wright G, Davis RE, Henrickson SE et al. ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood 2003; 101: 4944–4951.

    Article  CAS  PubMed  Google Scholar 

  8. Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl j med 2000; 343: 1910–1919.

    Article  CAS  PubMed  Google Scholar 

  9. Landau DA, Tausch E, Taylor-Weiner AN, Stewart C, Reiter JG, Bahlo J et al. Mutations driving CLL and their evolution in progression and relapse. Nature 2015; 526: 525–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rossi D, Bruscaggin A, Spina V, Rasi S, Khiabanian H, Messina M et al. Mutations of the SF3B1 splicing factor in chronic lymphocytic leukemia: association with progression and fludarabine-refractoriness. Blood 2011; 118: 6904–6908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cuneo A, Cavazzini F, Ciccone M, Daghia G, Sofritti O, Saccenti E et al. Modern treatment in chronic lymphocytic leukemia: impact on survival and efficacy in high-risk subgroups. Cancer med 2014; 3: 555–564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Simonetti G, Bertilaccio MT, Ghia P, Klein U . Mouse models in the study of chronic lymphocytic leukemia pathogenesis and therapy. Blood 2014; 124: 1010–1019.

    Article  CAS  PubMed  Google Scholar 

  13. Bresin A, D'Abundo L, Narducci MG, Fiorenza MT, Croce CM, Negrini M et al. TCL1 transgenic mouse model as a tool for the study of therapeutic targets and microenvironment in human B-cell chronic lymphocytic leukemia. Cell death disease 2016; 7: e2071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bichi R, Shinton SA, Martin ES, Koval A, Calin GA, Cesari R et al. Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proc Natl Acad Sci USA 2002; 99: 6955–6960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Efanov A, Zanesi N, Nazaryan N, Santanam U, Palamarchuk A, Croce CM et al. CD5+CD23+ leukemic cell populations in TCL1 transgenic mice show significantly increased proliferation and Akt phosphorylation. Leukemia 2010; 24: 970–975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yan XJ, Albesiano E, Zanesi N, Yancopoulos S, Sawyer A, Romano E et al. B cell receptors in TCL1 transgenic mice resemble those of aggressive, treatment-resistant human chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2006; 103: 11713–11718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Johnson AJ, Lucas DM, Muthusamy N, Smith LL, Edwards RB, De Lay MD et al. Characterization of the TCL-1 transgenic mouse as a preclinical drug development tool for human chronic lymphocytic leukemia. Blood 2006; 108: 1334–1338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Negrini M, Ferracin M, Sabbioni S, Croce CM . MicroRNAs in human cancer: from research to therapy. J cell sci 2007; 120 (Pt 11): 1833–1840.

    Article  CAS  PubMed  Google Scholar 

  19. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99: 15524–15529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Klein U, Lia M, Crespo M, Siegel R, Shen Q, Mo T et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer cell 2010; 17: 28–40.

    Article  CAS  PubMed  Google Scholar 

  21. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 2005; 102: 13944–13949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Roberts AW, Davids MS, Pagel JM, Kahl BS, Puvvada SD, Gerecitano JF et al. Targeting BCL2 with Venetoclax in Relapsed Chronic Lymphocytic Leukemia. N Engl j med 2016; 374: 311–322.

    Article  CAS  PubMed  Google Scholar 

  23. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE et al. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl j med 2005; 353: 1793–1801.

    Article  CAS  PubMed  Google Scholar 

  24. Fabbri M, Bottoni A, Shimizu M, Spizzo R, Nicoloso MS, Rossi S et al. Association of a microRNA/TP53 feedback circuitry with pathogenesis and outcome of B-cell chronic lymphocytic leukemia. JAMA 2011; 305: 59–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Visone R, Veronese A, Rassenti LZ, Balatti V, Pearl DK, Acunzo M et al. miR-181b is a biomarker of disease progression in chronic lymphocytic leukemia. Blood 2011; 118: 3072–3079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y et al. A microRNA component of the p53 tumour suppressor network. Nature 2007; 447: 1130–1134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Negrini M, Cutrona G, Bassi C, Fabris S, Zagatti B, Colombo M et al. microRNAome expression in chronic lymphocytic leukemia: comparison with normal B cell subsets and correlations with prognostic and clinical parameters. Clin cancer res 2014; 20: 4141–4153.

    Article  CAS  PubMed  Google Scholar 

  28. Bresin A, Callegari E, D'Abundo L, Cattani C, Bassi C, Zagatti B et al. miR-181b as a therapeutic agent for chronic lymphocytic leukemia in the Emicro-TCL1 mouse model. Oncotarget 2015; 6: 19807–19818.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Malavasi F, Deaglio S, Damle R, Cutrona G, Ferrarini M, Chiorazzi N . CD38 and chronic lymphocytic leukemia: a decade later. Blood 2011; 118: 3470–3478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Malavasi F, Deaglio S, Funaro A, Ferrero E, Horenstein AL, Ortolan E et al. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol rev 2008; 88: 841–886.

    Article  CAS  PubMed  Google Scholar 

  31. Chillemi A, Zaccarello G, Quarona V, Ferracin M, Ghimenti C, Massaia M et al. Anti-CD38 antibody therapy: windows of opportunity yielded by the functional characteristics of the target molecule. Mol Med 2013; 19: 99–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang X, Schwind S, Yu B, Santhanam R, Wang H, Hoellerbauer P et al. Targeted delivery of microRNA-29b by transferrin-conjugated anionic lipopolyplex nanoparticles: a novel therapeutic strategy in acute myeloid leukemia. Clin cancer res 2013; 19: 2355–2367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Calin GA, Pekarsky Y, Croce CM . The role of microRNA and other non-coding RNA in the pathogenesis of chronic lymphocytic leukemia. Best pract res Clin haematol 2007; 20: 425–437.

    Article  CAS  PubMed  Google Scholar 

  34. Costinean S, Zanesi N, Pekarsky Y, Tili E, Volinia S, Heerema N et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci USA 2006; 103: 7024–7029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. O'Connell RM, Rao DS, Chaudhuri AA, Boldin MP, Taganov KD, Nicoll J et al. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J exp med 2008; 205: 585–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tagawa H, Ikeda S, Sawada K . Role of microRNA in the pathogenesis of malignant lymphoma. Cancer sci 2013; 104: 801–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mattiske S, Suetani RJ, Neilsen PM, Callen DF . The oncogenic role of miR-155 in breast cancer. Cancer epidemiol biomarkers prev 2012; 21: 1236–1243.

    Article  CAS  PubMed  Google Scholar 

  38. Zanesi N, Pekarsky Y, Trapasso F, Calin G, Croce CM . MicroRNAs in mouse models of lymphoid malignancies. J nucleic acids invest 2010; 1: 36–40.

    Article  CAS  Google Scholar 

  39. Garzon R, Croce CM . MicroRNAs in normal and malignant hematopoiesis. Curr opin hematol 2008; 15: 352–358.

    Article  CAS  PubMed  Google Scholar 

  40. Cui B, Chen L, Zhang S, Mraz M, Fecteau JF, Yu J et al. MicroRNA-155 influences B-cell receptor signaling and associates with aggressive disease in chronic lymphocytic leukemia. Blood 2014; 124: 546–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Visone R, Rassenti LZ, Veronese A, Taccioli C, Costinean S, Aguda BD et al. Karyotype-specific microRNA signature in chronic lymphocytic leukemia. Blood 2009; 114: 3872–3879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rossi S, Shimizu M, Barbarotto E, Nicoloso MS, Dimitri F, Sampath D et al. microRNA fingerprinting of CLL patients with chromosome 17p deletion identify a miR-21 score that stratifies early survival. Blood 2010; 116: 945–952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vargova K, Curik N, Burda P, Basova P, Kulvait V, Pospisil V et al. MYB transcriptionally regulates the miR-155 host gene in chronic lymphocytic leukemia. Blood 2011; 117: 3816–3825.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Y, Roccaro AM, Rombaoa C, Flores L, Obad S, Fernandes SM et al. LNA-mediated anti-miR-155 silencing in low-grade B-cell lymphomas. Blood 2012; 120: 1678–1686.

    Article  CAS  PubMed  Google Scholar 

  45. Zhu X, Zhao H, Lin Z, Zhang G . Functional studies of miR-130a on the inhibitory pathways of apoptosis in patients with chronic myeloid leukemia. Cancer gene ther 2015; 22: 573–580.

    Article  CAS  PubMed  Google Scholar 

  46. Acunzo M, Visone R, Romano G, Veronese A, Lovat F, Palmieri D et al. miR-130a targets MET and induces TRAIL-sensitivity in NSCLC by downregulating miR-221 and 222. Oncogene 2012; 31: 634–642.

    Article  CAS  PubMed  Google Scholar 

  47. Pan Y, Wang R, Zhang F, Chen Y, Lv Q, Long G et al. MicroRNA-130a inhibits cell proliferation, invasion and migration in human breast cancer by targeting the RAB5A. Int j clin exp pathol 2015; 8: 384–393.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Li Y, Challagundla KB, Sun XX, Zhang Q, Dai MS . MicroRNA-130a associates with ribosomal protein L11 to suppress c-Myc expression in response to UV irradiation. Oncotarget 2015; 6: 1101–1114.

    Article  PubMed  Google Scholar 

  49. Fujita Y, Kojima T, Kawakami K, Mizutani K, Kato T, Deguchi T et al. miR-130a activates apoptotic signaling through activation of caspase-8 in taxane-resistant prostate cancer cells. The Prostate 2015; 75: 1568–1578.

    Article  CAS  PubMed  Google Scholar 

  50. Li B, Huang P, Qiu J, Liao Y, Hong J, Yuan Y . MicroRNA-130a is down-regulated in hepatocellular carcinoma and associates with poor prognosis. Med Oncol 2014; 31: 230.

    Article  PubMed  CAS  Google Scholar 

  51. Boll K, Reiche K, Kasack K, Morbt N, Kretzschmar AK, Tomm JM et al. MiR-130a, miR-203 and miR-205 jointly repress key oncogenic pathways and are downregulated in prostate carcinoma. Oncogene 2013; 32: 277–285.

    Article  CAS  PubMed  Google Scholar 

  52. Shen S, Guo X, Yan H, Lu Y, Ji X, Li L et al. A miR-130a-YAP positive feedback loop promotes organ size and tumorigenesis. Cell res 2015; 25: 997–1012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee SH, Jung YD, Choi YS, Lee YM . Targeting of RUNX3 by miR-130a and miR-495 cooperatively increases cell proliferation and tumor angiogenesis in gastric cancer cells. Oncotarget 2015; 6: 33269–33278.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Chen J, Yan D, Wu W, Zhu J, Ye W, Shu Q . MicroRNA-130a promotes the metastasis and epithelial-mesenchymal transition of osteosarcoma by targeting PTEN. Oncol rep 2016; 35: 3285–3292.

    Article  CAS  PubMed  Google Scholar 

  55. Jiang H, Yu WW, Wang LL, Peng Y . miR-130a acts as a potential diagnostic biomarker and promotes gastric cancer migration, invasion and proliferation by targeting RUNX3. Oncol rep 2015; 34: 1153–1161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu L, Nie J, Chen L, Dong G, Du X, Wu X et al. The oncogenic role of microRNA-130a/301a/454 in human colorectal cancer via targeting Smad4 expression. PloS one 2013; 8: e55532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kovaleva V, Mora R, Park YJ, Plass C, Chiramel AI, Bartenschlager R et al. miRNA-130a targets ATG2B and DICER1 to inhibit autophagy and trigger killing of chronic lymphocytic leukemia cells. Cancer res 2012; 72: 1763–1772.

    Article  CAS  PubMed  Google Scholar 

  58. Kim H, Huang W, Jiang X, Pennicooke B, Park PJ, Johnson MD . Integrative genome analysis reveals an oncomir/oncogene cluster regulating glioblastoma survivorship. Proc Natl Acad Sci USa 2010; 107: 2183–2188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kota J, Chivukula RR, O'Donnell KA, Wentzel EA, Montgomery CL, Hwang HW et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 2009; 137: 1005–1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sander S, Bullinger L, Klapproth K, Fiedler K, Kestler HA, Barth TF et al. MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood 2008; 112: 4202–4212.

    Article  CAS  PubMed  Google Scholar 

  61. Huse JT, Brennan C, Hambardzumyan D, Wee B, Pena J, Rouhanifard SH et al. The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo . Genes Development 2009; 23: 1327–1337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ji J, Shi J, Budhu A, Yu Z, Forgues M, Roessler S et al. MicroRNA expression, survival, and response to interferon in liver cancer. N Engl j med 2009; 361: 1437–1447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yang X, Liang L, Zhang XF, Jia HL, Qin Y, Zhu XC et al. MicroRNA-26a suppresses tumor growth and metastasis of human hepatocellular carcinoma by targeting interleukin-6-Stat3 pathway. Hepatology 2013; 58: 158–170.

    Article  CAS  PubMed  Google Scholar 

  64. Zhu Y, Lu Y, Zhang Q, Liu JJ, Li TJ, Yang JR et al. MicroRNA-26a/b and their host genes cooperate to inhibit the G1/S transition by activating the pRb protein. Nucleic acids res 2012; 40: 4615–4625.

    Article  CAS  PubMed  Google Scholar 

  65. Gao J, Li L, Wu M, Liu M, Xie X, Guo J et al. MiR-26a inhibits proliferation and migration of breast cancer through repression of MCL-1. PloS one 2013; 8: e65138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang Y, Wang Z, Gemeinhart RA . Progress in microRNA delivery. J control release 2013; 172: 962–974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen Y, Gao DY, Huang L . in vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv drug delivery rev 2014; 81: 128–141.

    Article  CAS  Google Scholar 

  68. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 2005; 438: 685–689.

    Article  CAS  PubMed  Google Scholar 

  69. Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S et al. LNA-mediated microRNA silencing in non-human primates. Nature 2008; 452: 896–899.

    Article  CAS  PubMed  Google Scholar 

  70. Callegari E, Elamin BK, D'Abundo L, Falzoni S, Donvito G, Moshiri F et al. Anti-tumor activity of a miR-199-dependent oncolytic adenovirus. PloS one 2013; 8: e73964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Amendola M, Passerini L, Pucci F, Gentner B, Bacchetta R, Naldini L . Regulated and multiple miRNA and siRNA delivery into primary cells by a lentiviral platform. Mol ther 2009; 17: 1039–1052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dorrance AM, Neviani P, Ferenchak GJ, Huang X, Nicolet D, Maharry KS et al. Targeting leukemia stem cells in vivo with antagomiR-126 nanoparticles in acute myeloid leukemia. Leukemia 2015; 29: 2143–2153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li Z, Rana TM . Therapeutic targeting of microRNAs: current status and future challenges. Nat rev Drug discov 2014; 13: 622–638.

    Article  CAS  PubMed  Google Scholar 

  74. Masotti A, Miller MR, Celluzzi A, Rose L, Micciulla F, Hadoke PW et al. Regulation of angiogenesis through the efficient delivery of microRNAs into endothelial cells using polyamine-coated carbon nanotubes. Nanomed nanotech biol med 2016; 12: 1511–1522.

    Article  CAS  Google Scholar 

  75. Taccioli C, Garofalo M, Chen H, Jiang Y, Tagliazucchi GM, Di Leva G et al. Repression of esophageal neoplasia and inflammatory signaling by anti-miR-31 delivery in vivo . J Natl Cancer Inst 2015; 107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Ghosh R, Singh LC, Shohet JM, Gunaratne PH . A gold nanoparticle platform for the delivery of functional microRNAs into cancer cells. Biomaterials 2013; 34: 807–816.

    Article  CAS  PubMed  Google Scholar 

  77. Jia XQ, Cheng HQ, Qian X, Bian CX, Shi ZM, Zhang JP et al. Lentivirus-mediated overexpression of microRNA-199a inhibits cell proliferation of human hepatocellular carcinoma. Cell biochem biophys 2012; 62: 237–244.

    Article  CAS  PubMed  Google Scholar 

  78. Di Martino MT, Campani V, Misso G, Gallo Cantafio ME, Gulla A, Foresta U et al. in vivo activity of miR-34a mimics delivered by stable nucleic acid lipid particles (SNALPs) against multiple myeloma. PloS one 2014; 9: e90005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Scognamiglio I, Di Martino MT, Campani V, Virgilio A, Galeone A, Gulla A et al. Transferrin-conjugated SNALPs encapsulating 2'-O-methylated miR-34a for the treatment of multiple myeloma. BioMed res int 2014; 2014: 217365.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. van de Donk NW, Moreau P, Plesner T, Palumbo A, Gay F, Laubach JP et al. Clinical efficacy and management of monoclonal antibodies targeting CD38 and SLAMF7 in multiple myeloma. Blood 2016; 127: 681–695.

    Article  CAS  PubMed  Google Scholar 

  81. Ibrahim S, Keating M, Do KA, O'Brien S, Huh YO, Jilani I et al. CD38 expression as an important prognostic factor in B-cell chronic lymphocytic leukemia. Blood 2001; 98: 181–186.

    Article  CAS  PubMed  Google Scholar 

  82. Vaisitti T, Audrito V, Serra S, Buonincontri R, Sociali G, Mannino E et al. The enzymatic activities of CD38 enhance CLL growth and trafficking: implications for therapeutic targeting. Leukemia 2015; 29: 356–368.

    Article  CAS  PubMed  Google Scholar 

  83. Perez-Galan P, Dreyling M, Wiestner A . Mantle cell lymphoma: biology, pathogenesis, and the molecular basis of treatment in the genomic era. Blood 2011; 117: 26–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bende RJ, Smit LA, Bossenbroek JG, Aarts WM, Spaargaren M, de Leval L et al. Primary follicular lymphoma of the small intestine: alpha4beta7 expression and immunoglobulin configuration suggest an origin from local antigen-experienced B cells. Am j pathol 2003; 162: 105–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Colomo L, Loong F, Rives S, Pittaluga S, Martinez A, Lopez-Guillermo A et al. Diffuse large B-cell lymphomas with plasmablastic differentiation represent a heterogeneous group of disease entities. Am j surg pathol 2004; 28: 736–747.

    Article  PubMed  Google Scholar 

  86. Ansari MQ, Dawson DB, Nador R, Rutherford C, Schneider NR, Latimer MJ et al. Primary body cavity-based AIDS-related lymphomas. Am j clin pathol 1996; 105: 221–229.

    Article  CAS  PubMed  Google Scholar 

  87. Horenstein AL, Durelli I, Malavasi F . Purification of clinical-grade monoclonal antibodies by chromatographic methods. Methods Mol Biol 2005; 308: 191–208.

    CAS  PubMed  Google Scholar 

  88. Miotto E, Saccenti E, Lupini L, Callegari E, Negrini M, Ferracin M . Quantification of circulating miRNAs by droplet digital PCR: comparison of EvaGreen- and TaqMan-based chemistries. Cancer epidemiol biomarkers prev 2014; 23: 2638–2642.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by funds from the Italian Association for Cancer Research (AIRC Special program 5xmille n.9980) and the University of Ferrara to MN, from the US National Cancer Institute grant CA19-7706 to CMC, from FIRB Programme of the Ministry of University and Research (Rome, Italy), Fondazione Cassa di Risparmio di Torino and Fondazione Ricerca Molinette Torino to FM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Negrini.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Abundo, L., Callegari, E., Bresin, A. et al. Anti-leukemic activity of microRNA-26a in a chronic lymphocytic leukemia mouse model. Oncogene 36, 6617–6626 (2017). https://doi.org/10.1038/onc.2017.269

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.269

This article is cited by

Search

Quick links