Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Metabolic reprogramming: a hallmark of viral oncogenesis

Abstract

More than 1 in 10 cases of cancer in the world are due to chronic viral infections. Viruses induce oncogenesis by targeting the same pathways known to be responsible for neoplasia in tumor cells, such as control of cell cycle progression, cell migration, proliferation and evasion from cell death and the host’s immune defense. In addition, metabolic reprogramming has been identified over a century ago as a requirement for growth of transformed cells. Renewed interest in this topic has emerged recently with the discovery that basically all metabolic changes in tumor cells are finely orchestrated by oncogenes and tumor suppressors. Indeed, cancer cells activate biosynthetic pathways in order to provide them with sufficient levels of energy and building blocks to proliferate. Interestingly, viruses introduce into their host cells similar metabolic adaptations, and importantly, it seems that they depend on these changes for their persistence and amplification. The central carbon metabolism, for example, is not only frequently altered in tumor cells but also modulated by human papillomavirus, hepatitis B and C viruses, Epstein–Barr virus and Kaposi’s Sarcoma-associated virus. Moreover, adenoviruses (Ad) and human cytomegalovirus, which are not directly oncogenic but present oncomodulatory properties, also divert cellular metabolism in a tumor cell-like mnner. Thus, metabolic reprogramming appears to be a hallmark of viral infection and provides an interesting therapeutic target, in particular, for oncogenic viruses. Therapeutic targeting of metabolic pathways may not only allow to eliminate or control the viral infection but also to prevent virus-induced carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. de Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol 2012; 13: 607–615.

    PubMed  Google Scholar 

  2. Mesri EA, Feitelson MA, Munger K . Human viral oncogenesis: a cancer hallmarks analysis. Cell Host Microbe 2014; 15: 266–282.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hanahan D, Weinberg RA . The hallmarks of cancer. Cell 2000; 100: 57–70.

    CAS  PubMed  Google Scholar 

  4. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    CAS  PubMed  Google Scholar 

  5. Koppenol WH, Bounds PL, Dang CV . Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer 2011; 11: 325–337.

    CAS  PubMed  Google Scholar 

  6. Ward PS, Thompson CB . Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 2012; 21: 297–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Racker E . Bioenergetics and the problem of tumor growth. Am Sci 1972; 60: 56–63.

    CAS  PubMed  Google Scholar 

  8. Weinhouse S . On respiratory impairment in cancer cells. Science 1956; 124: 267.

    CAS  PubMed  Google Scholar 

  9. Zu XL, Guppy M . Cancer metabolism: facts, fantasy, and fiction. Biochem Biophys Res Commun 2004; 313: 459–465.

    CAS  PubMed  Google Scholar 

  10. Moreno-Sanchez R, Rodriguez-Enriquez S, Marin-Hernandez A, Saavedra E . Energy metabolism in tumor cells. FEBS J 2007; 274: 1393–1418.

    CAS  PubMed  Google Scholar 

  11. Fantin VR, St-Pierre J, Leder P . Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 2006; 9: 425–434.

    CAS  PubMed  Google Scholar 

  12. Fan J, Kamphorst JJ, Mathew R, Chung MK, White E, Shlomi T et al. Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol Syst Biol 2013; 9: 712.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lunt SY, Vander Heiden MG . Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 2011; 27: 441–464.

    CAS  PubMed  Google Scholar 

  14. Medes G, Thomas A, Weinhouse S . Metabolism of neoplastic tissue. IV. A study of lipid synthesis in neoplastic tissue slices in vitro. Cancer Res 1953; 13: 27–29.

    CAS  PubMed  Google Scholar 

  15. Menendez JA, Lupu R . Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 2007; 7: 763–777.

    CAS  PubMed  Google Scholar 

  16. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB . The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 2008; 7: 11–20.

    CAS  PubMed  Google Scholar 

  17. DeBerardinis RJ, Cheng T . Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 2010; 29: 313–324.

    CAS  PubMed  Google Scholar 

  18. Shaw RJ, Cantley LC . Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 2006; 441: 424–430.

    CAS  PubMed  Google Scholar 

  19. Vanhaesebroeck B, Stephens L, Hawkins P . PI3K signalling: the path to discovery and understanding. Nat Rev Mol Cell Biol 2012; 13: 195–203.

    CAS  PubMed  Google Scholar 

  20. Bauer DE, Hatzivassiliou G, Zhao F, Andreadis C, Thompson CB . ATP citrate lyase is an important component of cell growth and transformation. Oncogene 2005; 24: 6314–6322.

    CAS  PubMed  Google Scholar 

  21. Laplante M, Sabatini DM . mTOR signaling in growth control and disease. Cell 2012; 149: 274–293.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Peterson TR, Sengupta SS, Harris TE, Carmack AE, Kang SA, Balderas E et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 2011; 146: 408–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Duvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 2010; 39: 171–183.

    PubMed  PubMed Central  Google Scholar 

  24. Kim JE, Chen J . regulation of peroxisome proliferator-activated receptor-gamma activity by mammalian target of rapamycin and amino acids in adipogenesis. Diabetes 2004; 53: 2748–2756.

    CAS  PubMed  Google Scholar 

  25. Ben-Sahra I, Howell JJ, Asara JM, Manning BD . Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science 2013; 339: 1323–1328.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Keith B, Johnson RS, Simon MC . HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer 2012; 12: 9–22.

    CAS  Google Scholar 

  27. Schodel J, Oikonomopoulos S, Ragoussis J, Pugh CW, Ratcliffe PJ, Mole DR . High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood 2011; 117: e207–e217.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC . HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 2006; 3: 187–197.

    CAS  PubMed  Google Scholar 

  29. Firth JD, Ebert BL, Pugh CW, Ratcliffe PJ . Oxygen-regulated control elements in the phosphoglycerate kinase 1 and lactate dehydrogenase A genes: similarities with the erythropoietin 3' enhancer. Proc Natl Acad Sci USA 1994; 91: 6496–6500.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 2012; 481: 380–384.

    CAS  Google Scholar 

  31. Wise DR, Ward PS, Shay JE, Cross JR, Gruber JJ, Sachdeva UM et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci USA 2011; 108: 19611–19616.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gameiro PA, Yang J, Metelo AM, Perez-Carro R, Baker R, Wang Z et al. In vivo HIF-mediated reductive carboxylation is regulated by citrate levels and sensitizes VHL-deficient cells to glutamine deprivation. Cell Metab 2013; 17: 372–385.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D . RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer 2011; 11: 761–774.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 2012; 149: 656–670.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kikuchi H, Pino MS, Zeng M, Shirasawa S, Chung DC . Oncogenic KRAS and BRAF differentially regulate hypoxia-inducible factor-1alpha and -2alpha in colon cancer. Cancer Res 2009; 69: 8499–8506.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ, Hackett S et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 2013; 497: 633–637.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 2013; 496: 101–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Vogt PK . Retroviral oncogenes: a historical primer. Nat Rev Cancer 2012; 12: 639–648.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wierstra I, Alves J . The c-myc promoter: still MysterY and challenge. Adv Cancer Res 2008; 99: 113–333.

    PubMed  Google Scholar 

  40. Osthus RC, Shim H, Kim S, Li Q, Reddy R, Mukherjee M et al. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem 2000; 275: 21797–21800.

    CAS  PubMed  Google Scholar 

  41. Kim JW, Zeller KI, Wang Y, Jegga AG, Aronow BJ, O'Donnell KA et al. Evaluation of myc E-box phylogenetic footprints in glycolytic genes by chromatin immunoprecipitation assays. Mol Cell Biol 2004; 24: 5923–5936.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. David CJ, Chen M, Assanah M, Canoll P, Manley JL . HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 2010; 463: 364–368.

    CAS  PubMed  Google Scholar 

  43. Amelio I, Cutruzzola F, Antonov A, Agostini M, Melino G . Serine and glycine metabolism in cancer. Trends Biochem Sci 2014; 39: 191–198.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Vazquez A, Tedeschi PM, Bertino JR . Overexpression of the mitochondrial folate and glycine-serine pathway: a new determinant of methotrexate selectivity in tumors. Cancer Res 2013; 73: 478–482.

    CAS  PubMed  Google Scholar 

  45. Morrish F, Hockenbery D . MYC and mitochondrial biogenesis. Cold Spring Harb Perspect Med 2014; 4: 5.

    Google Scholar 

  46. Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y . Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J Cell Biol 2007; 178: 93–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA 2008; 105: 18782–18787.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab 2012; 15: 110–121.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 2011; 35: 871–882.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Bieging KT, Mello SS, Attardi LD . Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer 2014; 14: 359–370.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Berkers CR, Maddocks OD, Cheung EC, Mor I, Vousden KH . Metabolic regulation by p53 family members. Cell Metab 2013; 18: 617–633.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Vousden KH, Ryan KM . p53 and metabolism. Nat Rev Cancer 2009; 9: 691–700.

    CAS  PubMed  Google Scholar 

  53. Song MS, Salmena L, Pandolfi PP . The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol 2012; 13: 283–296.

    Article  CAS  PubMed  Google Scholar 

  54. Garcia-Cao I, Song MS, Hobbs RM, Laurent G, Giorgi C, de Boer VC et al. Systemic elevation of PTEN induces a tumor-suppressive metabolic state. Cell 2012; 149: 49–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Shackelford DB, Shaw RJ . The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 2009; 9: 563–575.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Li Y, Xu S, Mihaylova MM, Zheng B, Hou X, Jiang B et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab 2011; 13: 376–388.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Faubert B, Boily G, Izreig S, Griss T, Samborska B, Dong Z et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab 2013; 17: 113–124.

    CAS  PubMed  Google Scholar 

  58. Treins C, Murdaca J, Van Obberghen E, Giorgetti-Peraldi S . AMPK activation inhibits the expression of HIF-1alpha induced by insulin and IGF-1. Biochem Biophys Res Commun 2006; 342: 1197–1202.

    CAS  PubMed  Google Scholar 

  59. Knudsen ES, Knudsen KE . Tailoring to RB: tumour suppressor status and therapeutic response. Nat Rev Cancer 2008; 8: 714–724.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Angus SP, Wheeler LJ, Ranmal SA, Zhang X, Markey MP, Mathews CK et al. Retinoblastoma tumor suppressor targets dNTP metabolism to regulate DNA replication. J Biol Chem 2002; 277: 44376–44384.

    CAS  PubMed  Google Scholar 

  61. Nicolay BN, Dyson NJ . The multiple connections between pRB and cell metabolism. Curr Opin Cell Biol 2013; 25: 735–740.

    CAS  PubMed  Google Scholar 

  62. Fajas L . Re-thinking cell cycle regulators: the cross-talk with metabolism. Front Oncol 2013; 3: 4.

    PubMed  PubMed Central  Google Scholar 

  63. Blanchet E, Annicotte JS, Lagarrigue S, Aguilar V, Clape C, Chavey C et al. E2F transcription factor-1 regulates oxidative metabolism. Nat Cell Biol 2011; 13: 1146–1152.

    CAS  PubMed  Google Scholar 

  64. Claus C, Liebert UG . A renewed focus on the interplay between viruses and mitochondrial metabolism. Arch Virol 2014; 159: 1267–1277.

    CAS  PubMed  Google Scholar 

  65. El-Bacha T, Da Poian AT . Virus-induced changes in mitochondrial bioenergetics as potential targets for therapy. Int J Biochem Cell Biol 2013; 45: 41–46.

    CAS  PubMed  Google Scholar 

  66. Crosbie EJ, Einstein MH, Franceschi S, Kitchener HC . Human papillomavirus and cervical cancer. Lancet 2013; 382: 889–899.

    PubMed  Google Scholar 

  67. Longworth MS, Laimins LA . Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiol Mol Biol Rev 2004; 68: 362–372.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Tommasino M, Accardi R, Caldeira S, Dong W, Malanchi I, Smet A et al. The role of TP53 in Cervical carcinogenesis. Hum Mutat 2003; 21: 307–312.

    CAS  PubMed  Google Scholar 

  69. Munger K, Basile JR, Duensing S, Eichten A, Gonzalez SL, Grace M et al. Biological activities and molecular targets of the human papillomavirus E7 oncoprotein. Oncogene 2001; 20: 7888–7898.

    CAS  PubMed  Google Scholar 

  70. Zwerschke W, Mazurek S, Massimi P, Banks L, Eigenbrodt E, Jansen-Durr P . Modulation of type M2 pyruvate kinase activity by the human papillomavirus type 16 E7 oncoprotein. Proc Natl Acad Sci USA 1999; 96: 1291–1296.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Mazurek S . Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol 2011; 43: 969–980.

    CAS  PubMed  Google Scholar 

  72. Mazurek S, Zwerschke W, Jansen-Durr P, Eigenbrodt E . Metabolic cooperation between different oncogenes during cell transformation: interaction between activated ras and HPV-16 E7. Oncogene 2001; 20: 6891–6898.

    CAS  PubMed  Google Scholar 

  73. Mazurek S, Zwerschke W, Jansen-Durr P, Eigenbrodt E . Effects of the human papilloma virus HPV-16 E7 oncoprotein on glycolysis and glutaminolysis: role of pyruvate kinase type M2 and the glycolytic-enzyme complex. Biochem J 2001; 356: 247–256.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Spangle JM, Munger K . The human papillomavirus type 16 E6 oncoprotein activates mTORC1 signaling and increases protein synthesis. J Virol 2010; 84: 9398–9407.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Pim D, Massimi P, Dilworth SM, Banks L . Activation of the protein kinase B pathway by the HPV-16 E7 oncoprotein occurs through a mechanism involving interaction with PP2A. Oncogene 2005; 24: 7830–7838.

    CAS  PubMed  Google Scholar 

  76. Tang X, Zhang Q, Nishitani J, Brown J, Shi S, Le AD . Overexpression of human papillomavirus type 16 oncoproteins enhances hypoxia-inducible factor 1 alpha protein accumulation and vascular endothelial growth factor expression in human cervical carcinoma cells. Clin Cancer Res 2007; 13: 2568–2576.

    CAS  PubMed  Google Scholar 

  77. Bodily JM, Mehta KP, Laimins LA . Human papillomavirus E7 enhances hypoxia-inducible factor 1-mediated transcription by inhibiting binding of histone deacetylases. Cancer Res 2011; 71: 1187–1195.

    CAS  PubMed  Google Scholar 

  78. Maehama T, Patzelt A, Lengert M, Hutter KJ, Kanazawa K, Hausen H et al. Selective down-regulation of human papillomavirus transcription by 2-deoxyglucose. Int J Cancer 1998; 76: 639–646.

    CAS  PubMed  Google Scholar 

  79. Molinolo AA, Marsh C, El Dinali M, Gangane N, Jennison K, Hewitt S et al. mTOR as a molecular target in HPV-associated oral and cervical squamous carcinomas. Clin Cancer Res 2012; 18: 2558–2568.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Henken FE, Banerjee NS, Snijders PJ, Meijer CJ, De-Castro Arce J, Rosl F et al. PIK3CA-mediated PI3-kinase signalling is essential for HPV-induced transformation in vitro. Mol Cancer 2011; 10: 71.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD, Gallo RC . Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci USA 1980; 77: 7415–7419.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Gessain A, Cassar O . Epidemiological aspects and world distribution of HTLV-1 infection. Front Microbiol 2012; 3: 388.

    PubMed  PubMed Central  Google Scholar 

  83. Proietti FA, Carneiro-Proietti AB, Catalan-Soares BC, Murphy EL . Global epidemiology of HTLV-I infection and associated diseases. Oncogene 2005; 24: 6058–6068.

    CAS  PubMed  Google Scholar 

  84. Matsuoka M, Jeang KT . Human T-cell leukemia virus type 1 (HTLV-1) and leukemic transformation: viral infectivity, Tax, HBZ and therapy. Oncogene 2011; 30: 1379–1389.

    CAS  PubMed  Google Scholar 

  85. Mukai R, Ohshima T . HTLV-1 HBZ positively regulates the mTOR signaling pathway via inhibition of GADD34 activity in the cytoplasm. Oncogene 2014; 33: 2317–2328.

    CAS  PubMed  Google Scholar 

  86. Manel N, Kim FJ, Kinet S, Taylor N, Sitbon M, Battini JL . The ubiquitous glucose transporter GLUT-1 is a receptor for HTLV. Cell 2003; 115: 449–459.

    CAS  PubMed  Google Scholar 

  87. Sripadi P, Shrestha B, Easley RL, Carpio L, Kehn-Hall K, Chevalier S et al. Direct detection of diverse metabolic changes in virally transformed and tax-expressing cells by mass spectrometry. PLoS One 2010; 5: e12590.

    PubMed  PubMed Central  Google Scholar 

  88. Straus S . Adenovirus infections in humans. In: Ginsberg H (ed). The Adenoviruses. Springer: New York, NY, USA, 1984. pp 451–496.

    Google Scholar 

  89. Lenaerts L, De Clercq E, Naesens L . Clinical features and treatment of adenovirus infections. Rev Med Virol 2008; 18: 357–374.

    CAS  PubMed  Google Scholar 

  90. Graham FL . Transformation by and oncogenicity of human adenoviruses. In: Ginsberg H (ed). The Adenoviruses. Springer: New York, NY, USA, 1984. pp 339–398.

    Google Scholar 

  91. Berk AJ . Recent lessons in gene expression, cell cycle control, and cell biology from adenovirus. Oncogene 2005; 24: 7673–7685.

    CAS  PubMed  Google Scholar 

  92. Thai M, Graham NA, Braas D, Nehil M, Komisopoulou E, Kurdistani SK et al. Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication. Cell Metab 2014; 19: 694–701.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. O'Shea C, Klupsch K, Choi S, Bagus B, Soria C, Shen J et al. Adenoviral proteins mimic nutrient/growth signals to activate the mTOR pathway for viral replication. EMBO J 2005; 24: 1211–1221.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Frese KK, Lee SS, Thomas DL, Latorre IJ, Weiss RS, Glaunsinger BA et al. Selective PDZ protein-dependent stimulation of phosphatidylinositol 3-kinase by the adenovirus E4-ORF1 oncoprotein. Oncogene 2003; 22: 710–721.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Kong K, Kumar M, Taruishi M, Javier RT . The human adenovirus E4-ORF1 protein subverts discs large 1 to mediate membrane recruitment and dysregulation of phosphatidylinositol 3-kinase. PLoS Pathog 2014; 10: e1004102.

    PubMed  PubMed Central  Google Scholar 

  96. Rogers PM, Mashtalir N, Rathod MA, Dubuisson O, Wang Z, Dasuri K et al. Metabolically favorable remodeling of human adipose tissue by human adenovirus type 36. Diabetes 2008; 57: 2321–2331.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang ZQ, Yu Y, Zhang XH, Floyd EZ, Cefalu WT . Human adenovirus 36 decreases fatty acid oxidation and increases de novo lipogenesis in primary cultured human skeletal muscle cells by promoting Cidec/FSP27 expression. Int J Obes (Lond) 2010; 34: 1355–1364.

    CAS  Google Scholar 

  98. El-Serag HB . Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 2012; 142: 1264–1273 e1.

    PubMed  Google Scholar 

  99. El-Serag HB, Rudolph KL . Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 2007; 132: 2557–2576.

    CAS  PubMed  Google Scholar 

  100. Arzumanyan A, Reis HM, Feitelson MA . Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat Rev Cancer 2013; 13: 123–135.

    CAS  PubMed  Google Scholar 

  101. Lemon SM, McGivern DR . Is hepatitis C virus carcinogenic? Gastroenterology 2012; 142: 1274–1278.

    PubMed  Google Scholar 

  102. Li H, Zhu W, Zhang L, Lei H, Wu X, Guo L et al. The metabolic responses to hepatitis B virus infection shed new light on pathogenesis and targets for treatment. Sci Rep 2015; 5: 8421.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Teng CF, Hsieh WC, Wu HC, Lin YJ, Tsai HW, Huang W et al. Hepatitis B virus pre-S2 mutant induces aerobic glycolysis through mammalian target of rapamycin signal cascade. PLoS One 2015; 10: e0122373.

    PubMed  PubMed Central  Google Scholar 

  104. Teng CF, Wu HC, Hsieh WC, Tsai HW, Su IJ . Activation of ATP citrate lyase by mTOR signal induces disturbed lipid metabolism in hepatitis B virus pre-S2 mutant tumorigenesis. J Virol 2015; 89: 605–614.

    PubMed  Google Scholar 

  105. Na TY, Shin YK, Roh KJ, Kang SA, Hong I, Oh SJ et al. Liver X receptor mediates hepatitis B virus X protein-induced lipogenesis in hepatitis B virus-associated hepatocellular carcinoma. Hepatology 2009; 49: 1122–1131.

    CAS  PubMed  Google Scholar 

  106. You X, Liu F, Zhang T, Li Y, Ye L, Zhang X . Hepatitis B virus X protein upregulates oncogene Rab18 to result in the dysregulation of lipogenesis and proliferation of hepatoma cells. Carcinogenesis 2013; 34: 1644–1652.

    CAS  PubMed  Google Scholar 

  107. Bard-Chapeau EA, Nguyen AT, Rust AG, Sayadi A, Lee P, Chua BQ et al. Transposon mutagenesis identifies genes driving hepatocellular carcinoma in a chronic hepatitis B mouse model. Nat Genet 2014; 46: 24–32.

    CAS  PubMed  Google Scholar 

  108. Bugianesi E, Salamone F, Negro F . The interaction of metabolic factors with HCV infection: does it matter? J Hepatol 2012; 56: S56–S65.

    CAS  PubMed  Google Scholar 

  109. Li Q, Pene V, Krishnamurthy S, Cha H, Liang TJ . Hepatitis C virus infection activates an innate pathway involving IKK-alpha in lipogenesis and viral assembly. Nat Med 2013; 19: 722–729.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Amako Y, Munakata T, Kohara M, Siddiqui A, Peers C, Harris M . Hepatitis C virus attenuates mitochondrial lipid beta-oxidation by downregulating mitochondrial trifunctional-protein expression. J Virol 2015; 89: 4092–4101.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Negro F . Abnormalities of lipid metabolism in hepatitis C virus infection. Gut 2010; 59: 1279–1287.

    CAS  PubMed  Google Scholar 

  112. Negro F . Facts and fictions of HCV and comorbidities: steatosis, diabetes mellitus, and cardiovascular diseases. J Hepatol 2014; 61: S69–S78.

    PubMed  Google Scholar 

  113. Ripoli M, D'Aprile A, Quarato G, Sarasin-Filipowicz M, Gouttenoire J, Scrima R et al. Hepatitis C virus-linked mitochondrial dysfunction promotes hypoxia-inducible factor 1 alpha-mediated glycolytic adaptation. J Virol 2010; 84: 647–660.

    CAS  PubMed  Google Scholar 

  114. Nasimuzzaman M, Waris G, Mikolon D, Stupack DG, Siddiqui A . Hepatitis C virus stabilizes hypoxia-inducible factor 1alpha and stimulates the synthesis of vascular endothelial growth factor. J Virol 2007; 81: 10249–10257.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Ramiere C, Rodriguez J, Enache LS, Lotteau V, Andre P, Diaz O . Activity of hexokinase is increased by its interaction with hepatitis C virus protein NS5A. J Virol 2014; 88: 3246–3254.

    PubMed  PubMed Central  Google Scholar 

  116. Wu X, Zhou Y, Zhang K, Liu Q, Guo D . Isoform-specific interaction of pyruvate kinase with hepatitis C virus NS5B. FEBS Lett 2008; 582: 2155–2160.

    CAS  PubMed  Google Scholar 

  117. Diamond DL, Syder AJ, Jacobs JM, Sorensen CM, Walters KA, Proll SC et al. Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics. PLoS Pathog 2010; 6: e1000719.

    PubMed  PubMed Central  Google Scholar 

  118. Young LS, Rickinson AB . Epstein-Barr virus: 40 years on. Nat Rev Cancer 2004; 4: 757–768.

    CAS  PubMed  Google Scholar 

  119. Taylor GS, Blackbourn DJ . Infectious agents in human cancers: lessons in immunity and immunomodulation from gammaherpesviruses EBV and KSHV. Cancer Lett 2011; 305: 263–278.

    CAS  PubMed  Google Scholar 

  120. Kaiser C, Laux G, Eick D, Jochner N, Bornkamm GW, Kempkes B . The proto-oncogene c-myc is a direct target gene of Epstein-Barr virus nuclear antigen 2. J Virol 1999; 73: 4481–4484.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Dawson CW, Port RJ, Young LS . The role of the EBV-encoded latent membrane proteins LMP1 and LMP2 in the pathogenesis of nasopharyngeal carcinoma (NPC). Semin Cancer Biol 2012; 22: 144–153.

    CAS  PubMed  Google Scholar 

  122. Darekar S, Georgiou K, Yurchenko M, Yenamandra SP, Chachami G, Simos G et al. Epstein-Barr virus immortalization of human B-cells leads to stabilization of hypoxia-induced factor 1 alpha, congruent with the Warburg effect. PLoS One 2012; 7: e42072.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Xiao L, Hu ZY, Dong X, Tan Z, Li W, Tang M et al. Targeting Epstein-Barr virus oncoprotein LMP1-mediated glycolysis sensitizes nasopharyngeal carcinoma to radiation therapy. Oncogene 2014; 33: 4568–4578.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Ganem D . KSHV and the pathogenesis of Kaposi sarcoma: listening to human biology and medicine. J Clin Invest 2010; 120: 939–949.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Uldrick TS, Whitby D . Update on KSHV epidemiology, Kaposi Sarcoma pathogenesis, and treatment of Kaposi Sarcoma. Cancer Lett 2011; 305: 150–162.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Jones JL, Hanson DL, Dworkin MS, Ward JW, Jaffe HW . Effect of antiretroviral therapy on recent trends in selected cancers among HIV-infected persons. Adult/Adolescent Spectrum of HIV Disease Project Group. J Acquir Immune Defic Syndr 1999; 21: S11–S17.

    CAS  PubMed  Google Scholar 

  127. Mesri EA, Cesarman E, Boshoff C . Kaposi's sarcoma and its associated herpesvirus. Nat Rev Cancer 2010; 10: 707–719.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Friborg J Jr., Kong W, Hottiger MO, Nabel GJ . p53 inhibition by the LANA protein of KSHV protects against cell death. Nature 1999; 402: 889–894.

    CAS  PubMed  Google Scholar 

  129. Radkov SA, Kellam P, Boshoff C . The latent nuclear antigen of Kaposi sarcoma-associated herpesvirus targets the retinoblastoma-E2F pathway and with the oncogene Hras transforms primary rat cells. Nat Med 2000; 6: 1121–1127.

    CAS  PubMed  Google Scholar 

  130. Cai QL, Knight JS, Verma SC, Zald P, Robertson ES . EC5S ubiquitin complex is recruited by KSHV latent antigen LANA for degradation of the VHL and p53 tumor suppressors. PLoS Pathog 2006; 2: e116.

    PubMed  PubMed Central  Google Scholar 

  131. Shin YC, Joo CH, Gack MU, Lee HR, Jung JU . Kaposi's sarcoma-associated herpesvirus viral IFN regulatory factor 3 stabilizes hypoxia-inducible factor-1 alpha to induce vascular endothelial growth factor expression. Cancer Res 2008; 68: 1751–1759.

    CAS  PubMed  Google Scholar 

  132. Carroll PA, Kenerson HL, Yeung RS, Lagunoff M . Latent Kaposi's sarcoma-associated herpesvirus infection of endothelial cells activates hypoxia-induced factors. J Virol 2006; 80: 10802–10812.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Cai Q, Murakami M, Si H, Robertson ES . A potential alpha-helix motif in the amino terminus of LANA encoded by Kaposi's sarcoma-associated herpesvirus is critical for nuclear accumulation of HIF-1alpha in normoxia. J Virol 2007; 81: 10413–10423.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Cavallin LE, Goldschmidt-Clermont P, Mesri EA . Molecular and cellular mechanisms of KSHV oncogenesis of Kaposi's sarcoma associated with HIV/AIDS. PLoS Pathog 2014; 10: e1004154.

    PubMed  PubMed Central  Google Scholar 

  135. Bhatt AP, Damania B . AKTivation of PI3K/AKT/mTOR signaling pathway by KSHV. Front Immunol 2012; 3: 401.

    PubMed  Google Scholar 

  136. Delgado T, Carroll PA, Punjabi AS, Margineantu D, Hockenbery DM, Lagunoff M . Induction of the Warburg effect by Kaposi's sarcoma herpesvirus is required for the maintenance of latently infected endothelial cells. Proc Natl Acad Sci USA 2010; 107: 10696–10701.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Sanchez EL, Carroll PA, Thalhofer AB, Lagunoff M . Latent KSHV infected endothelial cells are glutamine addicted and require glutaminolysis for survival. PLoS Pathog 2015; 11: e1005052.

    PubMed  PubMed Central  Google Scholar 

  138. Delgado T, Sanchez EL, Camarda R, Lagunoff M . Global metabolic profiling of infection by an oncogenic virus: KSHV induces and requires lipogenesis for survival of latent infection. PLoS Pathog 2012; 8: e1002866.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Bhatt AP, Jacobs SR, Freemerman AJ, Makowski L, Rathmell JC, Dittmer DP et al. Dysregulation of fatty acid synthesis and glycolysis in non-Hodgkin lymphoma. Proc Natl Acad Sci USA 2012; 109: 11818–11823.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Karki R, Lang SM, Means RE . The MARCH family E3 ubiquitin ligase K5 alters monocyte metabolism and proliferation through receptor tyrosine kinase modulation. PLoS Pathog 2011; 7: e1001331.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Gandhi MK, Khanna R . Human cytomegalovirus: clinical aspects, immune regulation, and emerging treatments. Lancet Infect Dis 2004; 4: 725–738.

    CAS  PubMed  Google Scholar 

  142. Griffiths PD . Burden of disease associated with human cytomegalovirus and prospects for elimination by universal immunisation. Lancet Infect Dis 2012; 12: 790–798.

    PubMed  Google Scholar 

  143. Michaelis M, Doerr HW, Cinatl J . The story of human cytomegalovirus and cancer: increasing evidence and open questions. Neoplasia 2009; 11: 1–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Harkins L, Volk AL, Samanta M, Mikolaenko I, Britt WJ, Bland KI et al. Specific localisation of human cytomegalovirus nucleic acids and proteins in human colorectal cancer. Lancet 2002; 360: 1557–1563.

    CAS  PubMed  Google Scholar 

  145. Prins RM, Cloughesy TF, Liau LM . Cytomegalovirus immunity after vaccination with autologous glioblastoma lysate. N Engl J Med 2008; 359: 539–541.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Miller G . Brain cancer. A viral link to glioblastoma? Science 2009; 323: 30–31.

    CAS  PubMed  Google Scholar 

  147. Cobbs CS, Harkins L, Samanta M, Gillespie GY, Bharara S, King PH et al. Human cytomegalovirus infection and expression in human malignant glioma. Cancer Res 2002; 62: 3347–3350.

    CAS  PubMed  Google Scholar 

  148. Samanta M, Harkins L, Klemm K, Britt WJ, Cobbs CS . High prevalence of human cytomegalovirus in prostatic intraepithelial neoplasia and prostatic carcinoma. J Urol 2003; 170: 998–1002.

    PubMed  Google Scholar 

  149. Price RL, Song J, Bingmer K, Kim TH, Yi JY, Nowicki MO et al. Cytomegalovirus contributes to glioblastoma in the context of tumor suppressor mutations. Cancer Res 2013; 73: 3441–3450.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Cinatl J, Scholz M, Kotchetkov R, Vogel JU, Doerr HW . Molecular mechanisms of the modulatory effects of HCMV infection in tumor cell biology. Trends Mol Med 2004; 10: 19–23.

    CAS  PubMed  Google Scholar 

  151. Tanaka S, Furukawa T, Plotkin SA . Human cytomegalovirus stimulates host cell RNA synthesis. J Virol 1975; 15: 297–304.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Landini MP . Early enhanced glucose uptake in human cytomegalovirus-infected cells. J Gen Virol 1984; 65 (Pt 7): 1229–1232.

    CAS  PubMed  Google Scholar 

  153. Munger J, Bennett BD, Parikh A, Feng XJ, McArdle J, Rabitz HA et al. Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy. Nat Biotechnol 2008; 26: 1179–1186.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Munger J, Bajad SU, Coller HA, Shenk T, Rabinowitz JD . Dynamics of the cellular metabolome during human cytomegalovirus infection. PLoS Pathog 2006; 2: e132.

    PubMed  PubMed Central  Google Scholar 

  155. Kaarbo M, Ager-Wick E, Osenbroch PO, Kilander A, Skinnes R, Muller F et al. Human cytomegalovirus infection increases mitochondrial biogenesis. Mitochondrion 2011; 11: 935–945.

    CAS  PubMed  Google Scholar 

  156. Chambers JW, Maguire TG, Alwine JC . Glutamine metabolism is essential for human cytomegalovirus infection. J Virol 2010; 84: 1867–1873.

    CAS  PubMed  Google Scholar 

  157. Spencer CM, Schafer XL, Moorman NJ, Munger J . Human cytomegalovirus induces the activity and expression of acetyl-coenzyme A carboxylase, a fatty acid biosynthetic enzyme whose inhibition attenuates viral replication. J Virol 2011; 85: 5814–5824.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Yu Y, Pierciey FJ Jr., Maguire TG, Alwine JC . PKR-like endoplasmic reticulum kinase is necessary for lipogenic activation during HCMV infection. PLoS Pathog 2013; 9: e1003266.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Yu Y, Maguire TG, Alwine JC . Human cytomegalovirus infection induces adipocyte-like lipogenesis through activation of sterol regulatory element binding protein 1. J Virol 2012; 86: 2942–2949.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. McArdle J, Schafer XL, Munger J . Inhibition of calmodulin-dependent kinase kinase blocks human cytomegalovirus-induced glycolytic activation and severely attenuates production of viral progeny. J Virol 2011; 85: 705–714.

    CAS  PubMed  Google Scholar 

  161. Clippinger AJ, Maguire TG, Alwine JC . Human cytomegalovirus infection maintains mTOR activity and its perinuclear localization during amino acid deprivation. J Virol 2011; 85: 9369–9376.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Yurochko AD . Human Cytomegalovirus Modulation of Signal Transduction. In: Shenk T, Stinski M (eds). Human Cytomegalovirus. Springer: Berlin, Heidelberg, Germany, 2008. pp 205–220.

    Google Scholar 

  163. Terry LJ, Vastag L, Rabinowitz JD, Shenk T . Human kinome profiling identifies a requirement for AMP-activated protein kinase during human cytomegalovirus infection. Proc Natl Acad Sci USA 2012; 109: 3071–3076.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Yu Y, Maguire TG, Alwine JC . ChREBP, a glucose-responsive transcriptional factor, enhances glucose metabolism to support biosynthesis in human cytomegalovirus-infected cells. Proc Natl Acad Sci USA 2014; 111: 1951–1956.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Fontaine KA, Camarda R, Lagunoff M . Vaccinia virus requires glutamine but not glucose for efficient replication. J Virol 2014; 88: 4366–4374.

    PubMed  PubMed Central  Google Scholar 

  166. Vastag L, Koyuncu E, Grady SL, Shenk TE, Rabinowitz JD . Divergent effects of human cytomegalovirus and herpes simplex virus-1 on cellular metabolism. PLoS Pathog 2011; 7: e1002124.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Birungi G, Chen SM, Loy BP, Ng ML, Li SF . Metabolomics approach for investigation of effects of dengue virus infection using the EA.hy926 cell line. J Proteome Res 2010; 9: 6523–6534.

    CAS  PubMed  Google Scholar 

  168. Ritter JB, Wahl AS, Freund S, Genzel Y, Reichl U . Metabolic effects of influenza virus infection in cultured animal cells: Intra- and extracellular metabolite profiling. BMC. Syst Biol 2010; 4: 61.

    Google Scholar 

  169. Takahashi M, Wolf AM, Watari E, Norose Y, Ohta S, Takahashi H . Increased mitochondrial functions in human glioblastoma cells persistently infected with measles virus. Antiviral Res 2013; 99: 238–244.

    CAS  PubMed  Google Scholar 

  170. Hollenbaugh JA, Munger J, Kim B . Metabolite profiles of human immunodeficiency virus infected CD4+ T cells and macrophages using LC-MS/MS analysis. Virology 2011; 415: 153–159.

    CAS  PubMed  Google Scholar 

  171. Sabharwal SS, Schumacker PT . Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nat Rev Cancer 2014; 14: 709–721.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Nakamoto Y, Guidotti LG, Kuhlen CV, Fowler P, Chisari FV . Immune pathogenesis of hepatocellular carcinoma. J Exp Med 1998; 188: 341–350.

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Rickinson AB . Co-infections, inflammation and oncogenesis: future directions for EBV research. Semin Cancer Biol 2014; 26: 99–115.

    CAS  PubMed  Google Scholar 

  174. Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA . Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer 2013; 13: 759–771.

    CAS  PubMed  Google Scholar 

  175. Vander Heiden MG . Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov 2011; 10: 671–684.

    CAS  PubMed  Google Scholar 

  176. DeVita VT Jr., Chu E . A history of cancer chemotherapy. Cancer Res 2008; 68: 8643–8653.

    CAS  PubMed  Google Scholar 

  177. De Clercq E . Antivirals and antiviral strategies. Nat Rev Microbiol 2004; 2: 704–720.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the French National Agency for AIDS and Viral Hepatitis Research (14370), Comité de Savoie de la Ligue contre le cancer (RAB12023CCA), Agence Nationale de Recherche, the Region Rhone-Alpes, DevWeCan French Laboratories of Excellence Network (Labex, Grant ANR-10-LABX-61) and OpeRa IHU program (GRANT ANR-10-IBHU-004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Bartosch.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lévy, P., Bartosch, B. Metabolic reprogramming: a hallmark of viral oncogenesis. Oncogene 35, 4155–4164 (2016). https://doi.org/10.1038/onc.2015.479

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.479

Search

Quick links