Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Whisper mutations: cryptic messages within the genetic code

Subjects

Abstract

Recent years have seen a great expansion in our understandings of how silent mutations can drive a disease and that mRNAs are not only mere messengers between the genome and the encoded proteins but also encompass regulatory activities. This review focuses on how silent mutations within open reading frames can affect the functional properties of the encoded protein. We describe how mRNAs exert control of cell biological processes governed by the encoded proteins via translation kinetics, protein folding, mRNA stability, spatio-temporal protein expression and by direct interactions with cellular factors. These examples illustrate how additional levels of information lie within the coding sequences and that the degenerative genetic code is not redundant and have co-evolved with the encoded proteins. Hence, so called synonymous mutations are not always silent but ‘whisper’.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Nissley DA, O'Brien EP . Timing is everything: unifying codon translation rates and nascent proteome behavior. J Am Chem Soc 2014; 136: 17892–17898.

    Article  CAS  PubMed  Google Scholar 

  2. Buchan JR, Stansfield I . Halting a cellular production line: responses to ribosomal pausing during translation. Biol Cell 2007; 99: 475–487.

    Article  CAS  PubMed  Google Scholar 

  3. Thanaraj TA, Argos P . Ribosome-mediated translational pause and protein domain organization. Protein Sci 1996; 5: 1594–1612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Saunders R, Deane CM . Synonymous codon usage influences the local protein structure observed. Nucleic Acids Res 2010; 38: 6719–6728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cortazzo P, Cervenansky C, Marin M, Reiss C, Ehrlich R, Deana A . Silent mutations affect in vivo protein folding in Escherichia coli. Biochem Biophys Res Commun 2002; 293: 537–541.

    Article  CAS  PubMed  Google Scholar 

  6. Rosano GL, Ceccarelli EA . Rare codon content affects the solubility of recombinant proteins in a codon bias-adjusted Escherichia coli strain. Microb Cell Fact 2009; 8: 41.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zalucki YM, Beacham IR, Jennings MP . Coupling between codon usage, translation and protein export in Escherichia coli. Biotechnol J 2011; 6: 660–667.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang G, Hubalewska M, Ignatova Z . Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nat Struct Mol Biol 2009; 16: 274–280.

    Article  CAS  PubMed  Google Scholar 

  9. Aguirre B, Costas M, Cabrera N, Mendoza-Hernandez G, Helseth DL Jr, Fernandez P et al. A ribosomal misincorporation of Lys for Arg in human triosephosphate isomerase expressed in Escherichia coli gives rise to two protein populations. PloS One 2011; 6: e21035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gingold H, Tehler D, Christoffersen NR, Nielsen MM, Asmar F, Kooistra SM et al. A dual program for translation regulation in cellular proliferation and differentiation. Cell 2014; 158: 1281–1292.

    Article  CAS  PubMed  Google Scholar 

  11. Pechmann S, Chartron JW, Frydman J . Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo. Nat Struct Mol Biol 2014; 21: 1100–1105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim SJ, Yoon JS, Shishido H, Yang Z, Rooney LA, Barral JM et al. Protein folding. Translational tuning optimizes nascent protein folding in cells. Science 2015; 348: 444–448.

    Article  CAS  PubMed  Google Scholar 

  13. Pizzo L, Iriarte A, Alvarez-Valin F, Marin M . Conservation of CFTR codon frequency through primates suggests synonymous mutations could have a functional effect. Mutat Res 2015; 775: 19–25.

    Article  CAS  PubMed  Google Scholar 

  14. Pagani F, Raponi M, Baralle FE . Synonymous mutations in CFTR exon 12 affect splicing and are not neutral in evolution. Proc Natl Acad Sci USA 2005; 102: 6368–6372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lazrak A, Fu L, Bali V, Bartoszewski R, Rab A, Havasi V et al. The silent codon change I507-ATC->ATT contributes to the severity of the DeltaF508 CFTR channel dysfunction. FASEB J 2013; 27: 4630–4645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sauna ZE, Kimchi-Sarfaty C . Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet 2011; 12: 683–691.

    Article  CAS  PubMed  Google Scholar 

  17. Fung KL, Pan J, Ohnuma S, Lund PE, Pixley JN, Kimchi-Sarfaty C et al. MDR1 synonymous polymorphisms alter transporter specificity and protein stability in a stable epithelial monolayer. Cancer Res 2014; 74: 598–608.

    Article  CAS  PubMed  Google Scholar 

  18. Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, Calcagno AM, Ambudkar SV et al. A ‘silent’ polymorphism in the MDR1 gene changes substrate specificity. Science 2007; 315: 525–528.

    Article  CAS  PubMed  Google Scholar 

  19. Komar AA . Silent SNPs: impact on gene function and phenotype. Pharmacogenomics 2007; 8: 1075–1080.

    Article  CAS  PubMed  Google Scholar 

  20. Tafech A, Bennett WR, Mills F, Lee CH . Identification of c-myc coding region determinant RNA sequences and structures cleaved by an RNase1-like endoribonuclease. Biochim Biophys Acta 2007; 1769: 49–60.

    Article  CAS  PubMed  Google Scholar 

  21. Lemm I, Ross J . Regulation of c-myc mRNA decay by translational pausing in a coding region instability determinant. Mol Cell Biol 2002; 22: 3959–3969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Weidensdorfer D, Stohr N, Baude A, Lederer M, Kohn M, Schierhorn A et al. Control of c-myc mRNA stability by IGF2BP1-associated cytoplasmic RNPs. RNA 2009; 15: 104–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ioannidis P, Kottaridi C, Dimitriadis E, Courtis N, Mahaira L, Talieri M et al. Expression of the RNA-binding protein CRD-BP in brain and non-small cell lung tumors. Cancer Lett 2004; 209: 245–250.

    Article  CAS  PubMed  Google Scholar 

  24. Noubissi FK, Nikiforov MA, Colburn N, Spiegelman VS . Transcriptional Regulation of CRD-BP by c-myc: Implications for c-myc Functions. Genes Cancer 2010; 1: 1074–1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Presnyak V, Alhusaini N, Chen YH, Martin S, Morris N, Kline N et al. Codon optimality is a major determinant of mRNA stability. Cell 2015; 160: 1111–1124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 2007; 28: 622–629.

    Article  CAS  PubMed  Google Scholar 

  27. Lamolle G, Marin M, Alvarez-Valin F . Silent mutations in the gene encoding the p53 protein are preferentially located in conserved amino acid positions and splicing enhancers. Mutat Res 2006; 600: 102–112.

    Article  CAS  PubMed  Google Scholar 

  28. Supek F, Minana B, Valcarcel J, Gabaldon T, Lehner B . Synonymous mutations frequently act as driver mutations in human cancers. Cell 2014; 156: 1324–1335.

    Article  CAS  PubMed  Google Scholar 

  29. Gonsalvez GB, Long RM . Spatial regulation of translation through RNA localization. F1000 Biol Rep 2012; 4: 16.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Di Liegro CM, Schiera G, Di Liegro I . Regulation of mRNA transport, localization and translation in the nervous system of mammals (Review). Int J Mol Med 2014; 33: 747–762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hasegawa Y, Irie K, Gerber AP . Distinct roles for Khd1p in the localization and expression of bud-localized mRNAs in yeast. Rna 2008; 14: 2333–2347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jansen RP, Niessing D . Assembly of mRNA-protein complexes for directional mRNA transport in eukaryotes—an overview. Curr Protein Pept Sci 2012; 13: 284–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shepard KA, Gerber AP, Jambhekar A, Takizawa PA, Brown PO, Herschlag D et al. Widespread cytoplasmic mRNA transport in yeast: identification of 22 bud-localized transcripts using DNA microarray analysis. Proc Natl Acad Sci USA 2003; 100: 11429–11434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Takizawa PA, Vale RD . The myosin motor, Myo4p, binds Ash1 mRNA via the adapter protein, She3p. Proc Natl Acad Sci USA 2000; 97: 5273–5278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chartrand P, Meng XH, Singer RH, Long RM . Structural elements required for the localization of ASH1 mRNA and of a green fluorescent protein reporter particle in vivo. Curr Biol 1999; 9: 333–336.

    Article  CAS  PubMed  Google Scholar 

  36. Shen Z, St-Denis A, Chartrand P . Cotranscriptional recruitment of She2p by RNA pol II elongation factor Spt4-Spt5/DSIF promotes mRNA localization to the yeast bud. Genes Dev 2010; 24: 1914–1926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Olivier C, Poirier G, Gendron P, Boisgontier A, Major F, Chartrand P . Identification of a conserved RNA motif essential for She2p recognition and mRNA localization to the yeast bud. Mol Cell Biol 2005; 25: 4752–4766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Du TG, Jellbauer S, Muller M, Schmid M, Niessing D, Jansen RP . Nuclear transit of the RNA-binding protein She2 is required for translational control of localized ASH1 mRNA. EMBO Rep 2008; 9: 781–787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Paquin N, Menade M, Poirier G, Donato D, Drouet E, Chartrand P . Local activation of yeast ASH1 mRNA translation through phosphorylation of Khd1p by the casein kinase Yck1p. Mol Cell 2007; 26: 795–809.

    Article  CAS  PubMed  Google Scholar 

  40. Breaker RR . Prospects for riboswitch discovery and analysis. Mol Cell 2011; 43: 867–879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Breaker RR . Riboswitches and the RNA world. Cold Spring Harb Perspect Biol 2012; 4: pii: a003566.

    Article  Google Scholar 

  42. Frieda KL, Block SM . Direct observation of cotranscriptional folding in an adenine riboswitch. Science 2012; 338: 397–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mandal M, Boese B, Barrick JE, Winkler WC, Breaker RR . Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell 2003; 113: 577–586.

    Article  CAS  PubMed  Google Scholar 

  44. Montange RK, Batey RT . Riboswitches: emerging themes in RNA structure and function. Annu Rev Biophys 2008; 37: 117–133.

    Article  CAS  PubMed  Google Scholar 

  45. Barrick JE, Breaker RR . The distributions, mechanisms, and structures of metabolite-binding riboswitches. Genome Biol 2007; 8: R239.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mironov AS, Gusarov I, Rafikov R, Lopez LE, Shatalin K, Kreneva RA et al. Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. Cell 2002; 111: 747–756.

    Article  CAS  PubMed  Google Scholar 

  47. Nahvi A, Sudarsan N, Ebert MS, Zou X, Brown KL, Breaker RR . Genetic control by a metabolite binding mRNA. Chem Biol 2002; 9: 1043.

    Article  CAS  PubMed  Google Scholar 

  48. Winkler WC, Cohen-Chalamish S, Breaker RR . An mRNA structure that controls gene expression by binding FMN. Proc Natl Acad Sci USA 2002; 99: 15908–15913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bushell M, Stoneley M, Kong YW, Hamilton TL, Spriggs KA, Dobbyn HC et al. Polypyrimidine tract binding protein regulates IRES-mediated gene expression during apoptosis. Mol Cell 2006; 23: 401–412.

    Article  CAS  PubMed  Google Scholar 

  50. Bourougaa K, Naski N, Boularan C, Mlynarczyk C, Candeias MM, Marullo S et al. Endoplasmic reticulum stress induces G2 cell-cycle arrest via mRNA translation of the p53 isoform p53/47. Mol Cell 2010; 38: 78–88.

    Article  CAS  PubMed  Google Scholar 

  51. Haupt Y, Maya R, Kazaz A, Oren M . Mdm2 promotes the rapid degradation of p53. Nature 1997; 387: 296–299.

    Article  CAS  PubMed  Google Scholar 

  52. Honda R, Yasuda H . Activity of MDM2, a ubiquitin ligase, toward p53 or itself is dependent on the RING finger domain of the ligase. Oncogene 2000; 19: 1473–1476.

    Article  CAS  PubMed  Google Scholar 

  53. Kubbutat MH, Jones SN, Vousden KH . Regulation of p53 stability by Mdm2. Nature 1997; 387: 299–303.

    Article  CAS  PubMed  Google Scholar 

  54. Candeias MM, Malbert-Colas L, Powell DJ, Daskalogianni C, Maslon MM, Naski N et al. P53 mRNA controls p53 activity by managing Mdm2 functions. Nat Cell Biol 2008; 10: 1098–1105.

    Article  CAS  PubMed  Google Scholar 

  55. Gajjar M, Candeias MM, Malbert-Colas L, Mazars A, Fujita J, Olivares-Illana V et al. The p53 mRNA-Mdm2 interaction controls Mdm2 nuclear trafficking and is required for p53 activation following DNA damage. Cancer Cell 2012; 21: 25–35.

    Article  CAS  PubMed  Google Scholar 

  56. Parant J, Chavez-Reyes A, Little NA, Yan W, Reinke V, Jochemsen AG et al. Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nat Genet 2001; 29: 92–95.

    Article  CAS  PubMed  Google Scholar 

  57. Malbert-Colas L, Ponnuswamy A, Olivares-Illana V, Tournillon AS, Naski N, Fahraeus R . HDMX folds the nascent p53 mRNA following activation by the ATM kinase. Mol Cell 2014; 54: 500–511.

    Article  CAS  PubMed  Google Scholar 

  58. Harding HP, Zhang Y, Ron D . Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 1999; 397: 271–274.

    Article  CAS  PubMed  Google Scholar 

  59. Hermeking H, Lengauer C, Polyak K, He TC, Zhang L, Thiagalingam S et al. 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell 1997; 1: 3–11.

    Article  CAS  PubMed  Google Scholar 

  60. Pyronnet S, Pradayrol L, Sonenberg N . A cell cycle-dependent internal ribosome entry site. Mol Cell 2000; 5: 607–616.

    Article  CAS  PubMed  Google Scholar 

  61. Mlynarczyk C, Fahraeus R . Endoplasmic reticulum stress sensitizes cells to DNA damage-induced apoptosis through p53-dependent suppression of p21(CDKN1A). Nat Commun 2014; 5: 5067.

    Article  CAS  PubMed  Google Scholar 

  62. O'Connor PB, Li GW, Weissman JS, Atkins JF, Baranov PV . rRNA:mRNA pairing alters the length and the symmetry of mRNA-protected fragments in ribosome profiling experiments. Bioinformatics 2013; 29: 1488–1491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nedialkova DD, Leidel SA . Optimization of codon translation rates via tRNA modifications maintains proteome integrity. Cell 2015; 161: 1606–1618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tribouillard-Tanvier D, Dos Reis S, Gug F, Voisset C, Beringue V, Sabate R et al. Protein folding activity of ribosomal RNA is a selective target of two unrelated antiprion drugs. PloS One 2008; 3: e2174.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Aretz S, Uhlhaas S, Sun Y, Pagenstecher C, Mangold E, Caspari R et al. Familial adenomatous polyposis: aberrant splicing due to missense or silent mutations in the APC gene. Hum Mutat 2004; 24: 370–380.

    Article  CAS  PubMed  Google Scholar 

  66. Gartner JJ, Parker SC, Prickett TD, Dutton-Regester K, Stitzel ML, Lin JC et al. Whole-genome sequencing identifies a recurrent functional synonymous mutation in melanoma. Proc Natl Acad Sci USA 2013; 110: 13481–13486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bartoszewski RA, Jablonsky M, Bartoszewska S, Stevenson L, Dai Q, Kappes J et al. A synonymous single nucleotide polymorphism in DeltaF508 CFTR alters the secondary structure of the mRNA and the expression of the mutant protein. J Biol Chem 2010; 285: 28741–28748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Duan J, Wainwright MS, Comeron JM, Saitou N, Sanders AR, Gelernter J et al. Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Hum Mol Genet 2003; 12: 205–216.

    Article  CAS  PubMed  Google Scholar 

  69. Stergachis AB, Haugen E, Shafer A, Fu W, Vernot B, Reynolds A et al. Exonic transcription factor binding directs codon choice and affects protein evolution. Science 2013; 342: 1367–1372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Equipe Labellisée La ligue contre le cancer, ECOS-Sud Program Cooperation France-Uruguay, ECOS-Nord Program Cooperation France-Mexico, Inserm and the project MEYS—NPS I—LO1413.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R Fåhraeus, M Marin or V Olivares-Illana.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fåhraeus, R., Marin, M. & Olivares-Illana, V. Whisper mutations: cryptic messages within the genetic code. Oncogene 35, 3753–3759 (2016). https://doi.org/10.1038/onc.2015.454

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.454

This article is cited by

Search

Quick links