Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Taspase1: a 'misunderstood' protease with translational cancer relevance

Subjects

Abstract

Proteolysis is not only a critical requirement for life, but the executing enzymes also play important roles in numerous pathological conditions, including cancer. Therefore, targeting proteases is clearly relevant for improving cancer patient care. However, to effectively control proteases, a profound knowledge of their mechanistic function as well as their regulation and downstream signalling in health and disease is required. The highly conserved protease Threonine Aspartase1 (Taspase1) is overexpressed in numerous liquid and solid malignancies and was characterized as a ‘non-oncogene addiction’ protease. Although Taspase1 was shown to cleave various regulatory proteins in humans as well as leukaemia provoking mixed lineage leukaemia fusions, our knowledge on its detailed functions and the underlying mechanisms contributing to cancer is still incomplete. Despite superficial similarity to type 2 asparaginases as well as Ntn proteases, such as the proteasome, Taspase1-related research so far gives us the picture of a unique protease exhibiting special features. Moreover, neither effective genetic nor chemical inhibitors for this enzyme are available so far, thus hampering not only to further dissect Taspase1’s pathobiological functions but also precluding the assessment of its clinical impact. Based on recent insights, we here critically review the current knowledge of Taspase1’s structure–function relationship and its mechanistic relevance for tumorigenesis obtained from in vitro and in vivo cancer models. We provide a comprehensive overview of tumour entities for which Taspase1 might be of predictive and therapeutic value, and present the respective experimental evidence. To stimulate progress in the field, a comprehensive overview of Taspase1 targeting approaches is presented, including coverage of Taspase1-related patents. We conclude by discussing future inhibition strategies and relevant challenges, which need to be resolved by the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Lopez-Otin C, Overall CM . Protease degradomics: a new challenge for proteomics. Nat Rev Mol Cell Biol 2002; 3: 509–519.

    CAS  PubMed  Google Scholar 

  2. Ordonez GR, Puente XS, Quesada V, Lopez-Otin C . Proteolytic systems: constructing degradomes. Methods Mol Biol 2009; 539: 33–47.

    CAS  PubMed  Google Scholar 

  3. Lopez-Otin C, Bond JS . Proteases: multifunctional enzymes in life and disease. J Biol Chem 2008; 283: 30433–30437.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Bonnans C, Chou J, Werb Z . Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 2014; 15: 786–801.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Koblinski JE, Ahram M, Sloane BF . Unraveling the role of proteases in cancer. Clin Chim Acta 2000; 291: 113–135.

    CAS  PubMed  Google Scholar 

  6. Lopez-Otin C, Matrisian LM . Emerging roles of proteases in tumour suppression. Nat Rev Cancer 2007; 7: 800–808.

    CAS  PubMed  Google Scholar 

  7. Mohamed MM, Sloane BF . Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer 2006; 6: 764–775.

    CAS  PubMed  Google Scholar 

  8. Poole AR, Tiltman KJ, Recklies AD, Stoker TA . Differences in secretion of the proteinase cathepsin B at the edges of human breast carcinomas and fibroadenomas. Nature 1978; 273: 545–547.

    CAS  PubMed  Google Scholar 

  9. Mason SD, Joyce JA . Proteolytic networks in cancer. Trends Cell Biol 2011; 21: 228–237.

    CAS  PubMed  Google Scholar 

  10. Vandenbroucke RE, Libert C . Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat Rev Drug Discov 2014; 13: 904–927.

    CAS  PubMed  Google Scholar 

  11. Coussens LM, Fingleton B, Matrisian LM . Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 2002; 295: 2387–2392.

    CAS  PubMed  Google Scholar 

  12. Overall CM, Lopez-Otin C . Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer 2002; 2: 657–672.

    CAS  PubMed  Google Scholar 

  13. Fisher RI, Bernstein SH, Kahl BS, Djulbegovic B, Robertson MJ, de Vos S et al. Multicenter phase II study of bortezomib in patients with relapsed or refractory mantle cell lymphoma. J Clin Oncol 2006; 24: 4867–4874.

    PubMed  Google Scholar 

  14. Huber EM, Groll M . Inhibitors for the immuno- and constitutive proteasome: current and future trends in drug development. Angew Chem Int Ed Engl 2012; 51: 8708–8720.

    CAS  PubMed  Google Scholar 

  15. Huber EM, Heinemeyer W, Groll M . Bortezomib-resistant mutant proteasomes: structural and biochemical evaluation with carfilzomib and ONX 0914. Structure 2015; 23: 407–417.

    CAS  PubMed  Google Scholar 

  16. Pal A, Young MA, Donato NJ . Emerging potential of therapeutic targeting of ubiquitin-specific proteases in the treatment of cancer. Cancer Res 2014; 74: 4955–4966.

    CAS  PubMed  Google Scholar 

  17. Drag M, Salvesen GS . Emerging principles in protease-based drug discovery. Nat Rev Drug Discov 2010; 9: 690–701.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Hsieh JJ, Cheng EH, Korsmeyer SJ . Taspase1: a threonine aspartase required for cleavage of MLL and proper HOX gene expression. Cell 2003; 115: 293–303.

    CAS  PubMed  Google Scholar 

  19. Bier C, Knauer SK, Docter D, Schneider G, Kramer OH, Stauber RH . The importin-alpha/nucleophosmin switch controls taspase1 protease function. Traffic 2011; 12: 703–714.

    CAS  PubMed  Google Scholar 

  20. Michalska K, Jaskolski M . Structural aspects of L-asparaginases, their friends and relations. Acta Biochim Pol 2006; 53: 627–640.

    CAS  PubMed  Google Scholar 

  21. Xu Q, Buckley D, Guan C, Guo HC . Structural insights into the mechanism of intramolecular proteolysis. Cell 1999; 98: 651–661.

    CAS  PubMed  Google Scholar 

  22. Bier C, Knauer SK, Klapthor A, Schweitzer A, Rekik A, Kramer OH et al. Cell-based analysis of structure-function activity of threonine aspartase 1. J Biol Chem 2011; 286: 3007–3017.

    CAS  PubMed  Google Scholar 

  23. Wünsch D, Hahlbrock A, Heiselmayer C, Backer S, Heun P, Goesswein D et al. Fly versus man: evolutionary impairment of nucleolar targeting affects the degradome of Drosophila's Taspase1. FASEB J 2015; 29: 1973–1985.

    PubMed  Google Scholar 

  24. Bier C, Hecht R, Kunst L, Scheiding S, Wunsch D, Goesswein D et al. Overexpression of the catalytically impaired Taspase1 T234V or Taspase1 D233A variants does not have a dominant negative effect in T(4;11) leukemia cells. PLoS One 2012; 7: e34142.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Bier C, Knauer SK, Wunsch D, Kunst L, Scheiding S, Kaiser M et al. Allosteric inhibition of Taspase1's pathobiological activity by enforced dimerization in vivo. FASEB J 2012; 26: 3421–3429.

    CAS  PubMed  Google Scholar 

  26. Khan JA, Dunn BM, Tong L . Crystal structure of human Taspase1, a crucial protease regulating the function of MLL. Structure 2005; 13: 1443–1452.

    CAS  PubMed  Google Scholar 

  27. Wünsch D, Hahlbrock A, Heiselmayer C, Backer S, Schrenk C, Benne F et al. Evolutionary divergence of threonine aspartase1 leads to species-specific substrate recognition. Biol Chem 2015; 396: l367–l376.

    Google Scholar 

  28. Lee JT, Chen DY, Yang Z, Ramos AD, Hsieh JJ, Bogyo M . Design, syntheses, and evaluation of Taspase1 inhibitors. Bioorg Med Chem Lett 2009; 19: 5086–5090.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. van den Boom J, Mamic M, Baccelliere D, Zweerink S, Kaschani F, Knauer S et al. Peptidyl succinimidyl peptides as taspase 1 inhibitors. Chembiochem 2014; 15: 2233–2237.

    CAS  PubMed  Google Scholar 

  30. Knauer SK, Fetz V, Rabenstein J, Friedl S, Hofmann B, Sabiani S et al. Bioassays to monitor taspase1 function for the identification of pharmacogenetic inhibitors. PLoS One 2011; 6: e18253.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Dehart MP, Anderson BD . The role of the cyclic imide in alternate degradation pathways for asparagine-containing peptides and proteins. J Pharm Sci 2007; 96: 2667–2685.

    CAS  PubMed  Google Scholar 

  32. Rawlings ND, Barrett AJ, Bateman A . Asparagine peptide lyases: a seventh catalytic type of proteolytic enzymes. J Biol Chem 2011; 286: 38321–38328.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Stephenson RC, Clarke S . Succinimide formation from aspartyl and asparaginyl peptides as a model for the spontaneous degradation of proteins. J Biol Chem 1989; 264: 6164–6170.

    CAS  PubMed  Google Scholar 

  34. Takeda S, Chen DY, Westergard TD, Fisher JK, Rubens JA, Sasagawa S et al. Proteolysis of MLL family proteins is essential for taspase1-orchestrated cell cycle progression. Genes Dev 2006; 20: 2397–2409.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Romero-Garcia S, Lopez-Gonzalez JS, Baez-Viveros JL, Aguilar-Cazares D, Prado-Garcia H . Tumor cell metabolism: an integral view. Cancer Biol Ther 2011; 12: 939–948.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Chen DY, Liu H, Takeda S, Tu HC, Sasagawa S, Van Tine BA et al. Taspase1 functions as a non-oncogene addiction protease that coordinates cancer cell proliferation and apoptosis. Cancer Res 2010; 70: 5358–5367.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Kramer OH, Stauber RH, Bug G, Hartkamp J, Knauer SK . SIAH proteins: critical roles in leukemogenesis. Leukemia 2013; 27: 792–802.

    CAS  PubMed  Google Scholar 

  38. Pless B, Oehm C, Knauer S, Stauber RH, Dingermann T, Marschalek R . The heterodimerization domains of MLL-FYRN and FYRC-are potential target structures in t(4;11) leukemia. Leukemia 2011; 25: 663–670.

    CAS  PubMed  Google Scholar 

  39. Hsieh JJ, Ernst P, Erdjument-Bromage H, Tempst P, Korsmeyer SJ . Proteolytic cleavage of MLL generates a complex of N- and C-terminal fragments that confers protein stability and subnuclear localization. Mol Cell Biol 2003; 23: 186–194.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Liu H, Cheng EH, Hsieh JJ . MLL fusions: pathways to leukemia. Cancer Biol Ther 2009; 8: 1204–1211.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Krivtsov AV, Armstrong SA . MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer 2007; 7: 823–833.

    CAS  PubMed  Google Scholar 

  42. Nakamura T, Mori T, Tada S, Krajewski W, Rozovskaia T, Wassell R et al. ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol Cell 2002; 10: 1119–1128.

    CAS  PubMed  Google Scholar 

  43. Bursen A, Schwabe K, Ruster B, Henschler R, Ruthardt M, Dingermann T et al. The AF4.MLL fusion protein is capable of inducing ALL in mice without requirement of MLL.AF4. Blood 2010; 115: 3570–3579.

    CAS  PubMed  Google Scholar 

  44. Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002; 30: 41–47.

    CAS  PubMed  Google Scholar 

  45. Wünsch D, Fetz V, Heider D, Tenzer S, Bier C, Kunst L et al. Chemico-genetic strategies to inhibit the leukemic potential of threonine aspartase-1. Blood Cancer J 2012; 2: e77.

    PubMed Central  PubMed  Google Scholar 

  46. Leemans CR, Braakhuis BJ, Brakenhoff RH . The molecular biology of head and neck cancer. Nat Rev Cancer 2011; 11: 9–22.

    CAS  PubMed  Google Scholar 

  47. Stauber RH, Knauer SK, Habtemichael N, Bier C, Unruhe B, Weisheit S et al. A combination of a ribonucleotide reductase inhibitor and histone deacetylase inhibitors downregulates EGFR and triggers BIM-dependent apoptosis in head and neck cancer. Oncotarget 2012; 3: 31–43.

    PubMed  Google Scholar 

  48. Fakhry C, Westra WH, Li S, Cmelak A, Ridge JA, Pinto H et al. Improved survival of patients with human papillomavirus-positive head and neck squamous cell carcinoma in a prospective clinical trial. J Natl Cancer Inst 2008; 100: 261–269.

    CAS  PubMed  Google Scholar 

  49. Forastiere AA, Ang KK, Brizel D, Brockstein BE, Burtness BA, Cmelak AJ et al. Head and neck cancers. J Natl Compr Canc Netw 2008; 6: 646–695.

    CAS  PubMed  Google Scholar 

  50. Demircan K, Gunduz E, Gunduz M, Beder LB, Hirohata S, Nagatsuka H et al. Increased mRNA expression of ADAMTS metalloproteinases in metastatic foci of head and neck cancer. Head Neck 2009; 31: 793–801.

    PubMed  Google Scholar 

  51. Rosenthal EL, Matrisian LM . Matrix metalloproteases in head and neck cancer. Head Neck 2006; 28: 639–648.

    PubMed Central  PubMed  Google Scholar 

  52. Hoffmann M, Quabius ES, Tribius S, Hebebrand L, Gorogh T, Halec G et al. Human papillomavirus infection in head and neck cancer: the role of the secretory leukocyte protease inhibitor. Oncol Rep 2013; 29: 1962–1968.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Kornfeld JW, Meder S, Wohlberg M, Friedrich RE, Rau T, Riethdorf L et al. Overexpression of TACE and TIMP3 mRNA in head and neck cancer: association with tumour development and progression. Br J Cancer 2011; 104: 138–145.

    CAS  PubMed  Google Scholar 

  54. Lagadec C, Vlashi E, Bhuta S, Lai C, Mischel P, Werner M et al. Tumor cells with low proteasome subunit expression predict overall survival in head and neck cancer patients. BMC Cancer 2014; 14: 152.

    PubMed Central  PubMed  Google Scholar 

  55. Rao VH, Kandel A, Lynch D, Pena Z, Marwaha N, Deng C et al. A positive feedback loop between HER2 and ADAM12 in human head and neck cancer cells increases migration and invasion. Oncogene 2012; 31: 2888–2898.

    CAS  PubMed  Google Scholar 

  56. Omuro A, DeAngelis LM . Glioblastoma and other malignant gliomas: a clinical review. Jama 2013; 310: 1842–1850.

    CAS  PubMed  Google Scholar 

  57. Sturm D, Bender S, Jones DT, Lichter P, Grill J, Becher O et al. Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge. Nat Rev Cancer 2014; 14: 92–107.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Chen DY, Lee Y, Van Tine BA, Searleman AC, Westergard TD, Liu H et al. A pharmacologic inhibitor of the protease Taspase1 effectively inhibits breast and brain tumor growth. Cancer Res 2012; 72: 736–746.

    CAS  PubMed  Google Scholar 

  59. Hutchinson L . Breast cancer: challenges, controversies, breakthroughs. Nat Rev Clin Oncol 2010; 7: 669–670.

    PubMed  Google Scholar 

  60. Kumler I, Tuxen MK, Nielsen DL . A systematic review of dual targeting in HER2-positive breast cancer. Cancer Treat Rev 2014; 40: 259–270.

    CAS  PubMed  Google Scholar 

  61. Singh JC, Jhaveri K, Esteva FJ . HER2-positive advanced breast cancer: optimizing patient outcomes and opportunities for drug development. Br J Cancer 2014; 111: 1888–1898.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Hadler-Olsen E, Winberg JO, Uhlin-Hansen L . Matrix metalloproteinases in cancer: their value as diagnostic and prognostic markers and therapeutic targets. Tumour Biol 2013; 34: 2041–2051.

    CAS  PubMed  Google Scholar 

  63. Dufour A, Overall CM . Missing the target: matrix metalloproteinase antitargets in inflammation and cancer. Trends Pharmacol Sci 2013; 34: 233–242.

    CAS  PubMed  Google Scholar 

  64. Dong Y, Van Tine BA, Oyama T, Wang PI, Cheng EH, Hsieh JJ . Taspase1 cleaves MLL1 to activate cyclin E for HER2/neu breast tumorigenesis. Cell Res 2014; 24: 1354–1366.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Aklilu M, Eng C . The current landscape of locally advanced rectal cancer. Nat Rev Clin Oncol 2011; 8: 649–659.

    CAS  PubMed  Google Scholar 

  66. Markowitz SD, Bertagnolli MM . Molecular origins of cancer: Molecular basis of colorectal cancer. N Engl J Med 2009; 361: 2449–2460.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Tomasetti C, Marchionni L, Nowak MA, Parmigiani G, Vogelstein B . Only three driver gene mutations are required for the development of lung and colorectal cancers. Proc Natl Acad Sci U S A 2015; 112: 118–123.

    CAS  PubMed  Google Scholar 

  68. Gibellini L, Pinti M, Boraldi F, Giorgio V, Bernardi P, Bartolomeo R et al. Silencing of mitochondrial Lon protease deeply impairs mitochondrial proteome and function in colon cancer cells. FASEB J 2014; 28: 5122–5135.

    CAS  PubMed  Google Scholar 

  69. Gavert N, Sheffer M, Raveh S, Spaderna S, Shtutman M, Brabletz T et al. Expression of L1-CAM and ADAM10 in human colon cancer cells induces metastasis. Cancer Res 2007; 67: 7703–7712.

    CAS  PubMed  Google Scholar 

  70. Stauber RH, Mann W, Knauer SK . Nuclear and cytoplasmic survivin: molecular mechanism, prognostic, and therapeutic potential. Cancer Res 2007; 67: 5999–6002.

    CAS  PubMed  Google Scholar 

  71. Marchant DJ, Bellac CL, Moraes TJ, Wadsworth SJ, Dufour A, Butler GS et al. A new transcriptional role for matrix metalloproteinase-12 in antiviral immunity. Nat Med 2014; 20: 493–502.

    CAS  PubMed  Google Scholar 

  72. Chan N, Meng Lim T . Cytoplasmic nucleophosmin has elevated T199 phosphorylation upon which G2/M phase progression is dependent. Sci Rep 2015; 5: 11777.

    PubMed Central  PubMed  Google Scholar 

  73. Falini B, Bolli N, Liso A, Martelli MP, Mannucci R, Pileri S et al. Altered nucleophosmin transport in acute myeloid leukaemia with mutated NPM1: molecular basis and clinical implications. Leukemia 2009; 23: 1731–1743.

    CAS  PubMed  Google Scholar 

  74. Ayton PM, Cleary ML . Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene 2001; 20: 5695–5707.

    CAS  PubMed  Google Scholar 

  75. Benedikt A, Baltruschat S, Scholz B, Bursen A, Arrey TN, Meyer B et al. The leukemogenic AF4-MLL fusion protein causes P-TEFb kinase activation and altered epigenetic signatures. Leukemia 2010; 25: 135–144.

    PubMed  Google Scholar 

  76. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    CAS  PubMed  Google Scholar 

  77. Zhou H, Spicuglia S, Hsieh JJ, Mitsiou DJ, Hoiby T, Veenstra GJ et al. Uncleaved TFIIA is a substrate for taspase 1 and active in transcription. Mol Cell Biol 2006; 26: 2728–2735.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Luo J, Solimini NL, Elledge SJ . Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 2009; 136: 823–837.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Witt S, Kwon YD, Sharon M, Felderer K, Beuttler M, Robinson CV et al. Proteasome assembly triggers a switch required for active-site maturation. Structure 2006; 14: 1179–1188.

    CAS  PubMed  Google Scholar 

  80. Kar G, Gursoy A, Keskin O . Human cancer protein-protein interaction network: a structural perspective. PLoS Comput Biol 2009; 5: e1000601.

    PubMed Central  PubMed  Google Scholar 

  81. Arkin MR, Whitty A . The road less traveled: modulating signal transduction enzymes by inhibiting their protein-protein interactions. Curr Opin Chem Biol 2009; 13: 284–290.

    CAS  PubMed  Google Scholar 

  82. Stauber R, Gaitanaris GA, Pavlakis GN . Analysis of trafficking of Rev and transdominant Rev proteins in living cells using green fluorescent protein fusions: transdominant Rev blocks the export of Rev from the nucleus to the cytoplasm. Virology 1995; 213: 439–449.

    CAS  PubMed  Google Scholar 

  83. Sabiani S, Geppert T, Engelbrecht C, Kowarz E, Schneider G, Marschalek R . Unraveling the Activation Mechanism of Taspase1 which Controls the Oncogenic AF4-MLL Fusion Protein. EBioMedicine 2015; 2: 386–395.

    PubMed Central  PubMed  Google Scholar 

  84. Ottmann C, Weyand M, Sassa T, Inoue T, Kato N, Wittinghofer A et al. A structural rationale for selective stabilization of anti-tumor interactions of 14-3-3 proteins by cotylenin A. J Mol Biol 2009; 386: 913–919.

    CAS  PubMed  Google Scholar 

  85. Rose R, Erdmann S, Bovens S, Wolf A, Rose M, Hennig S et al. Identification and structure of small-molecule stabilizers of 14-3-3 protein-protein interactions. Angew Chem Int Ed Engl 2011; 49: 4129–4132.

    Google Scholar 

  86. Thiel P, Kaiser M, Ottmann C . Small-molecule stabilization of protein-protein interactions: an underestimated concept in drug discovery? Angew Chem Int Ed Engl 2012; 51: 2012–2018.

    CAS  PubMed  Google Scholar 

  87. Docter D, Strieth S, Westmeier D, Hayden O, Gao M, Knauer SK et al. No king without a crown—impact of the nanomaterial-protein corona on nanobiomedicine. Nanomedicine (Lond) 2015; 10: 503–519.

    CAS  Google Scholar 

  88. Turk B . Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 2006; 5: 785–799.

    CAS  PubMed  Google Scholar 

  89. Hsieh JJ, Korsmeyer SJ, Korsmeyer S, Cheng EH Inhibitors of Taspase1 protease activity. Pat.No.US 7 964,700 B2, 2011.

  90. Saunders LP, Ouellette A, Bandle R, Chang WC, Zhou H, Misra RN et al. Identification of small-molecule inhibitors of autotaxin that inhibit melanoma cell migration and invasion. Mol Cancer Ther 2008; 7: 3352–3362.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Zudaire E, Aparicio M, Cuttitta F Antiangiogenic small molecules and methods of use. Pat.No.EP2461806, 2011..

  92. Hsieh JJ, Cheng EH Taspase1 inhibitors and their uses. Pat.No.US 8,501,811 B2, 2013.

  93. Chen DY, Takeda S, Oyama T, Hsieh JJ . Targeting taspase1 for cancer therapy—response. Cancer Res 2012; 72: 2913.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Scarbaci K, Troiano V, Ettari R, Pinto A, Micale N, Di Giovanni C et al. Development of novel selective peptidomimetics containing a boronic acid moiety, targeting the 20 S proteasome as anticancer agents. ChemMedChem 2014; 9: 1801–1816.

    CAS  PubMed  Google Scholar 

  95. Oyama T, Sasagawa S, Takeda S, Hess RA, Lieberman PM, Cheng EH et al. Cleavage of TFIIA by Taspase1 activates TRF2-specified mammalian male germ cell programs. Dev Cell 2013; 27: 188–200.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Niehof M, Borlak J . EPS15R, TASP1, and PRPF3 are novel disease candidate genes targeted by HNF4alpha splice variants in hepatocellular carcinomas. Gastroenterology 2008; 134: 1191–1202.

    PubMed  Google Scholar 

Download references

Acknowledgements

Grant support: IFF Mainz Intramural Research Funding, Zeiss foundation ChemBioMed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Wünsch.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wünsch, D., Hahlbrock, A., Jung, S. et al. Taspase1: a 'misunderstood' protease with translational cancer relevance. Oncogene 35, 3351–3364 (2016). https://doi.org/10.1038/onc.2015.436

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.436

This article is cited by

Search

Quick links