Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

An enhanced functional interrogation/manipulation of intracellular signaling pathways with the peptide ‘stapling’ technology

Subjects

Abstract

Specific protein–protein interactions (PPIs) constitute a key underlying mechanism for the presence of a multitude of intracellular signaling pathways, which are essential for the survival of normal and cancer cells. Specific molecular blockers for a crucial PPI would therefore be invaluable tools for an enhanced functional interrogation of the signaling pathway harboring this particular PPI. On the other hand, if a particular PPI is essential for the survival of cancer cells but is absent in or dispensable for the survival of normal cells, its specific molecular blockers could potentially be developed into effective anticancer therapeutics. Due to the flat and extended PPI interface, it would be conceivably difficult for small molecules to achieve an effective blockade, a problem which could be potentially circumvented with peptides or proteins. However, the well-documented proteolytic instability and cellular impermeability of peptides and proteins in general would make their developing into effective intracellular PPI blockers quite a challenge. With the advent of the peptide ‘stapling’ technology which was demonstrated to be able to stabilize the α-helical conformation of a peptide via bridging two neighboring amino-acid side chains with a ‘molecular staple’, a linear parent peptide could be transformed into a stronger PPI blocker with enhanced proteolytic stability and cellular permeability. This review will furnish an account on the peptide ‘stapling’ technology and its exploitation in efforts to achieve an enhanced functional interrogation or manipulation of intracellular signaling pathways especially those that are cancer relevant.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

Aib:

2-aminoisobutyric acid

AKAP:

A-kinase anchoring protein

AKB:

A-kinase binding

BAD:

BCL-2-associated agonist of cell death

Bad −/− :

BAD-null

BAK:

BCL-2 antagonist/killer

BAX:

BCL-2-associated X

BCL-2:

B-cell lymphoma 2

BCL9:

B-cell CLL/lymphoma 9

BCL-W:

B-cell lymphoma gene-W

BCL-XL:

B-cell lymphoma-extra large

BFL-1/A1:

BCL-2-related protein A1

BH3:

BCL-2 homology 3

BID:

BH3 interacting domain death agonist

BIM:

BCL-2 interacting mediator of cell death

EED:

embryonic ectoderm development

eIF4E:

eukaryotic initiation factor 4E

EZH2:

enhancer of zeste homolog 2

GK:

glucokinase

GSIS:

glucose-stimulated insulin secretion

hDM2:

human double minute 2

hDM4:

human double minute 4

hDMX:

human double minute X

HIV-1:

human immunodeficiency virus-1

IRS1:

insulin receptor substrate 1

MAML1:

mastermind-like family co-activator protein 1

MCL-1:

myeloid cell leukemia-1

mDM2:

murine double minute 2

mDM4:

murine double minute 4

mDMX:

murine double minute X

MOM:

mitochondrial outer membrane

NR:

nuclear receptor

PKA:

protein kinase A

PKA-R:

protein kinase A—regulatory subunit

PPI:

protein–protein interaction

PRC2:

polycomb repressive complex 2

RCM:

ring closing metathesis

TCF4:

T-cell factor 4.

References

  1. Arkin MR, Wells JA . Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nat Rev Drug Discov 2004; 3: 301–317.

    Article  CAS  Google Scholar 

  2. Goodman M, Ro S . Peptidomimetics for drug design. In: Wolff ME (ed). Burger’s Medicinal Chemistry and Drug Discovery, 5th edn. John Wiley & Sons, Inc.: New York, NY, USA, 1995, pp 803–861.

    Google Scholar 

  3. McCrudden MT, Singh TR, Migalska K, Donnelly RF . Strategies for enhanced peptide and protein delivery. Ther Deliv 2013; 4: 593–614.

    Article  CAS  Google Scholar 

  4. Simerska P, Moyle PM, Toth I . Modern lipid-, carbohydrate-, and peptide-based delivery systems for peptide, vaccine, and gene products. Med Res Rev 2011; 31: 520–547.

    Article  CAS  Google Scholar 

  5. Choi YS, David AE . Cell penetrating peptides and the mechanisms for intracellular entry. Curr Pharm Biotechnol 2014; 15: 192–199.

    Article  CAS  Google Scholar 

  6. Verdine GL, Walensky LD . The challenge of drugging undruggable targets in cancer: lessons learned from targeting BCL-2 family members. Clin Cancer Res 2007; 13: 7264–7270.

    Article  CAS  Google Scholar 

  7. Karle IL . Controls exerted by the Aib residue: helix formation and helix reversal. Biopolymers 2001; 60: 351–365.

    Article  CAS  Google Scholar 

  8. Phelan JC, Skelton NJ, Braisted AC, McDowell RS . A general method for constraining short peptides to an α-helical conformation. J Am Chem Soc 1997; 119: 455–460.

    Article  CAS  Google Scholar 

  9. Bracken C, Gulyas J, Taylor JW, Baum J . Synthesis and nuclear magnetic resonance structure determination of an α-helical, bicyclic, lactam-bridged hexapeptide. J Am Chem Soc 1994; 116: 6431–6432.

    Article  CAS  Google Scholar 

  10. Jackson DY, King DS, Chmielewski J, Singh S, Schultz PG . General approach to the synthesis of short α-helical peptides. J Am Chem Soc 1991; 113: 9391–9392.

    Article  CAS  Google Scholar 

  11. Blackwell HE, Grubbs RH . Highly efficient synthesis of covalently cross-linked peptide helices by ring-closing metathesis. Angew Chem Int Ed 1998; 37: 3281–3284.

    Article  CAS  Google Scholar 

  12. Schafmeister CE, Po J, Verdine GL . An all-hydrocarbon cross-linking system for enhancing the helicity and metabolic stability of peptides. J Am Chem Soc 2000; 122: 5891–5892.

    Article  CAS  Google Scholar 

  13. Verdine GL, Hilinski GJ . Stapled peptides for intracellular drug targets. Methods Enzymol 2012; 503: 3–33.

    Article  CAS  Google Scholar 

  14. Bernal F, Katz SG . Synthesis of stabilized α-helical peptides. Methods Mol Biol 2014; 1176: 107–114.

    Article  CAS  Google Scholar 

  15. Kaul R, Balaram P . Stereochemical control of peptide folding. Bioorg Med Chem 1999; 7: 105–117.

    Article  CAS  Google Scholar 

  16. Kawamoto SA, Coleska A, Ran X, Yi H, Yang C-Y, Wang S . Design of triazole-stapled BCL9 α-helical peptides to target the β-catenin/B-cell CLL/lymphoma 9 (BCL9) protein-protein interaction. J Med Chem 2012; 55: 1137–1146.

    Article  CAS  Google Scholar 

  17. Cantel S, Isaad AC, Scrima M, Levy JJ, DiMarchi RD, Rovero P et al. Synthesis and conformational analysis of a cyclic peptide obtained via i to i+4 intramolecular side-chain to side-chain azide-alkyne 1,3-dipolar cycloaddition. J Org Chem 2008; 73: 5663–5674.

    Article  CAS  Google Scholar 

  18. Lau YH, de Andrade P, Quah S-T, Rossmann M, Laraia L, Sköld N et al. Functionalised staple linkages for modulating the cellular activity of stapled peptides. Chem Sci 2014; 5: 1804–1809.

    Article  CAS  Google Scholar 

  19. Lau YH, de Andrade P, Sköld N, McKenzie GJ, Venkitaraman AR, Verma C et al. Investigating peptide sequence variations for ‘double-click’ stapled p53 peptides. Org Biomol Chem 2014; 12: 4074–4077.

    Article  CAS  Google Scholar 

  20. Muppidi A, Zhang H, Curreli F, Li N, Debnath AK, Lin Q . Design of antiviral stapled peptides containing a biphenyl cross-linker. Bioorg Med Chem Lett 2014; 24: 1748–1751.

    Article  CAS  Google Scholar 

  21. Muppidi A, Doi K, Edwardraja S, Drake EJ, Gulick AM, Wang HG et al. Rational design of proteolytically stable, cell-permeable peptide-based selective Mcl-1 inhibitors. J Am Chem Soc 2012; 134: 14734–14737.

    Article  CAS  Google Scholar 

  22. Muppidi A, Wang Z, Li X, Chen J, Lin Q . Achieving cell penetration with distance-matching cysteine cross-linkers: a facile route to cell-permeable peptide dual inhibitors of Mdm2/Mdmx. Chem Commun (Camb) 2011; 47: 9396–9398.

    Article  CAS  Google Scholar 

  23. Haney CM, Loch MT, Horne WS . Promoting peptide α-helix formation with dynamic covalent oxime side-chain cross-links. Chem Commun (Camb) 2011; 47: 10915–10917.

    Article  CAS  Google Scholar 

  24. Flint DG, Kumita JR, Smart OS, Woolley GA . Using an azobenzene cross-linker to either increase or decrease peptide helix content upon trans-to-cis photoisomerization. Chem Biol 2002; 9: 391–397.

    Article  CAS  Google Scholar 

  25. Madden MM, Muppidi A, Li Z, Li X, Chen J, Lin Q . Synthesis of cell-permeable stapled peptide dual inhibitors of the p53-Mdm2/Mdmx interactions via photoinduced cycloaddition. Bioorg Med Chem Lett 2011; 21: 1472–1475.

    Article  CAS  Google Scholar 

  26. Kim YW, Grossmann TN, Verdine GL . Synthesis of all-hydrocarbon stapled α-helical peptides by ring-closing olefin metathesis. Nat Protoc 2011; 6: 761–771.

    Article  CAS  Google Scholar 

  27. Urnes P, Doty P . Optical rotation and the conformation of polypeptides and proteins. Adv Protein Chem 1961; 16: 401–544.

    Article  CAS  Google Scholar 

  28. Shim SY, Kim Y-W, Verdine GL . A new i, i+3 peptide stapling system for α-helix stabilization. Chem Biol Drug Des 2013; 82: 635–642.

    Article  CAS  Google Scholar 

  29. Walensky LD, Bird GH . Hydrocarbon-stapled peptides: principles, practice, and progress. J Med Chem 2014; 57: 6275–6288.

    Article  CAS  Google Scholar 

  30. Bird GH, Bernal F, Pitter K, Walensky LD . Synthesis and biophysical characterization of stabilized α-helices of BCL-2 domains. Methods Enzymol 2008; 446: 369–386.

    Article  CAS  Google Scholar 

  31. Pitter K, Bernal F, Labelle J, Walensky LD . Dissection of the BCL-2 family signaling network with stabilized α-helices of BCL-2 domains. Methods Enzymol 2008; 446: 387–408.

    Article  CAS  Google Scholar 

  32. Edwards AL, Gavathiotis E, LaBelle JL, Braun CR, Opoku-Nsiah KA, Bird GH et al. Multimodal interaction with BCL-2 family proteins underlies the proapoptotic activity of PUMA BH3. Chem Biol 2013; 20: 888–902.

    Article  CAS  Google Scholar 

  33. Leshchiner ES, Braun CR, Bird GH, Walensky LD . Direct activation of full-length proapoptotic BAK. Proc Natl Acad Sci USA 2013; 110: E986–E995.

    Article  CAS  Google Scholar 

  34. Moldoveanu T, Grace CR, Llambi F, Nourse A, Fitzgerald P, Gehring K et al. BID-induced structural changes in BAK promote apoptosis. Nat Struct Mol Biol 2013; 20: 589–597.

    Article  CAS  Google Scholar 

  35. Gavathiotis E, Reyna DE, Davis ML, Bird GH, Walensky LD . BH3-triggered structural reorganization drives the activation of proapoptotic BAX. Mol Cell 2010; 40: 481–492.

    Article  CAS  Google Scholar 

  36. Gavathiotis E, Suzuki M, Davis ML, Pitter K, Bird GH, Katz SG et al. BAX activation is initiated at a novel interaction site. Nature 2008; 455: 1076–1081.

    Article  CAS  Google Scholar 

  37. Walensky LD, Pitter K, Morash J, Oh KJ, Barbuto S, Fisher J et al. A stapled BID BH3 helix directly binds and activates BAX. Mol Cell 2006; 24: 199–210.

    Article  CAS  Google Scholar 

  38. Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG et al. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 2005; 17: 393–403.

    Article  CAS  Google Scholar 

  39. Danial NN, Walensky LD, Zhang CY, Choi CS, Fisher JK, Molina AJ et al. Dual role of proapoptotic BAD in insulin secretion and beta cell survival. Nat Med 2008; 14: 144–153.

    Article  CAS  Google Scholar 

  40. Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ . Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 1996; 87: 619–628.

    Article  CAS  Google Scholar 

  41. Datta SR, Katsov A, Hu L, Petros A, Fesik SW, Yaffe MB et al. 14-3-3 proteins and survival kinases cooperate to inactivate BAD by BH3 domain phosphorylation. Mol Cell 2000; 6: 41–51.

    Article  CAS  Google Scholar 

  42. Thomas S, Quinn BA, Das SK, Dash R, Emdad L, Dasgupta S et al. Targeting the Bcl-2 family for cancer therapy. Expert Opin Ther Targets 2013; 17: 61–75.

    Article  CAS  Google Scholar 

  43. Walensky LD, Kung AL, Escher I, Malia TJ, Barbuto S, Wright RD et al. Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 2004; 305: 1466–1470.

    Article  CAS  Google Scholar 

  44. Stewart ML, Fire E, Keating AE, Walensky LD . The MCL-1 BH3 helix is an exclusive MCL-1 inhibitor and apoptosis sensitizer. Nat Chem Biol 2010; 6: 595–601.

    Article  CAS  Google Scholar 

  45. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J et al. The landscape of somatic copy-number alteration across human cancers. Nature 2010; 463: 899–905.

    Article  CAS  Google Scholar 

  46. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 2005; 435: 677–681.

    Article  CAS  Google Scholar 

  47. Tse C, Shoemaker AR, Adickes J, Anderson MG, Chen J, Jin S et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res 2008; 68: 3421–3428.

    Article  CAS  Google Scholar 

  48. LaBelle JL, Katz SG, Bird GH, Gavathiotis E, Stewart ML, Lawrence C et al. A stapled BIM peptide overcomes apoptotic resistance in hematologic cancers. J Clin Invest 2012; 122: 2018–2031.

    Article  CAS  Google Scholar 

  49. Tao W, Levine AJ . Nucleocytoplasmic shuttling of oncoprotein Hdm2 is required for Hdm2-mediated degradation of p53. Proc Natl Acad Sci USA 1999; 96: 3077–3080.

    Article  CAS  Google Scholar 

  50. Ramos YF, Stad R, Attema J, Peltenburg LT, van der Eb AJ, Jochemsen AG . Aberrant expression of HDMX proteins in tumor cells correlates with wild-type p53. Cancer Res 2001; 61: 1839–1842.

    CAS  Google Scholar 

  51. Bernal F, Tyler AF, Korsmeyer SJ, Walensky LD, Verdine GL . Reactivation of the p53 tumor suppressor pathway by a stapled p53 peptide. J Am Chem Soc 2007; 129: 2456–2457.

    Article  CAS  Google Scholar 

  52. Bernal F, Wade M, Godes M, Davis TN, Whitehead DG, Kung AL et al. A stapled p53 helix overcomes HDMX-mediated suppression of p53. Cancer Cell 2010; 18: 411–422.

    Article  CAS  Google Scholar 

  53. Brown CJ, Quah ST, Jong J, Goh AM, Chiam PC, Khoo KH et al. Stapled peptides with improved potency and specificity that activate p53. ACS Chem Biol 2013; 8: 506–512.

    Article  CAS  Google Scholar 

  54. Wei SJ, Joseph T, Chee S, Li L, Yurlova L, Zolghadr K et al. Inhibition of nutlin-resistant HDM2 mutants by stapled peptides. PLoS One 2013; 8: e81068.

    Article  Google Scholar 

  55. Chang YS, Graves B, Guerlavais V, Tovar C, Packman K, To KH et al. Stapled α-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. Proc Natl Acad Sci USA 2013; 110: E3445–E3454.

    Article  CAS  Google Scholar 

  56. Bird GH, Crannell WC, Walensky LD . Chemical synthesis of hydrocarbon-stapled peptides for protein interaction research and therapeutic targeting. Curr Protoc Chem Biol 2011; 3: 99–117.

    PubMed  PubMed Central  Google Scholar 

  57. Spiegel J, Cromm PM, Itzen A, Goody RS, Grossmann TN, Waldmann H . Direct targeting of Rab-GTPase–effector interactions. Angew Chem Int Ed 2014; 53: 2498–2503.

    Article  CAS  Google Scholar 

  58. Wang Y, Ho TG, Bertinetti D, Neddermann M, Franz E, Mo GCH et al. Isoform-selective disruption of AKAP-localized PKA using hydrocarbon stapled peptides. ACS Chem Biol 2014; 9: 635–642 With a correction to this paper published on: ACS Chem Biol 2014; 9: 1386.

    Article  CAS  Google Scholar 

  59. Moellering RE, Cornejo M, Davis TN, Del Bianco C, Aster JC, Blacklow SC et al. Direct inhibition of the NOTCH transcription factor complex. Nature 2009; 462: 182–188.

    Article  CAS  Google Scholar 

  60. Takada K, Zhu D, Bird GH, Sukhdeo K, Zhao J-J, Mani M et al. Targeted disruption of the BCL9/β-catenin complex inhibits oncogenic Wnt signaling. Sci Transl Med 2012; 4: 148ra117.

    Article  Google Scholar 

  61. Grossmann TN, Yeh JT, Bowman BR, Chu Q, Moellering RE, Verdine GL . Inhibition of oncogenic Wnt signaling through direct targeting of β-catenin. Proc Natl Acad Sci USA 2012; 109: 17942–17947.

    Article  CAS  Google Scholar 

  62. Phillips C, Roberts LR, Schade M, Bazin R, Bent A, Davies NL et al. Design and structure of stapled peptides binding to estrogen receptors. J Am Chem Soc 2011; 133: 9696–9699.

    Article  CAS  Google Scholar 

  63. Kim W, Bird GH, Neff T, Guo G, Kerenyi MA, Walensky LD et al. Targeted disruption of the EZH2-EED complex inhibits EZH2-dependent cancer. Nat Chem Biol 2013; 9: 643–650.

    Article  CAS  Google Scholar 

  64. Sinclair JK, Denton EV, Schepartz A . Inhibiting epidermal growth factor receptor at a distance. J Am Chem Soc 2014; 136: 11232–11235.

    Article  CAS  Google Scholar 

  65. Joseph TL, Lane DP, Verma CS . Stapled BH3 peptides against MCL-1: mechanism and design using atomistic simulations. PLoS One 2012; 7: e43985.

    Article  CAS  Google Scholar 

  66. Guo Z, Mohanty U, Noehre J, Sawyer TK, Sherman W, Krilov G . Probing the α-helical structural stability of stapled p53 peptides: molecular dynamics simulations and analysis. Chem Biol Drug Des 2010; 75: 348–359.

    Article  CAS  Google Scholar 

  67. Joseph TL, Lane D, Verma CS . Stapled peptides in the p53 pathway: computer simulations reveal novel interactions of the staples with the target protein. Cell Cycle 2010; 9: 4560–4568.

    Article  CAS  Google Scholar 

  68. Lama D, Quah ST, Verma CS, Lakshminarayanan R, Beuerman RW, Lane DP et al. Rational optimization of conformational effects induced by hydrocarbon staples in peptides and their binding interfaces. Sci Rep 2013; 3: 3451.

    Article  Google Scholar 

  69. Frank AO, Vangamudi B, Feldkamp MD, Souza-Fagundes EM, Luzwick JW, Cortez D et al. Discovery of a potent stapled helix peptide that binds to the 70N domain of replication protein A. J Med Chem 2014; 57: 2455–2461.

    Article  CAS  Google Scholar 

  70. Hao Y, Wang C, Cao B, Hirsch BM, Song J, Markowitz SD et al. Gain of interaction with IRS1 by p110α-helical domain mutants is crucial for their oncogenic functions. Cancer Cell 2013; 23: 583–593.

    Article  CAS  Google Scholar 

  71. Gembarska A, Luciani F, Fedele C, Russell EA, Dewaele M, Villar S et al. MDM4 is a key therapeutic target in cutaneous melanoma. Nat Med 2012; 18: 1239–1247.

    Article  CAS  Google Scholar 

  72. Chin L . The genetics of malignant melanoma: lessons from mouse and man. Nat Rev Cancer 2003; 3: 559–570.

    Article  CAS  Google Scholar 

  73. Bird GH, Gavathiotis E, LaBelle JL, Katz SG, Walensky LD . Distinct BimBH3 (BimSAHB) stapled peptides for structural and cellular studies. ACS Chem Biol 2014; 9: 831–837.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

WZ is a Jiangsu provincial specially appointed professor and a recipient of the Jiangsu provincial ‘innovation and venture talents’ award plan, and the associated financial supports to the completion of this manuscript are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W Zheng.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Chen, D. & Zheng, W. An enhanced functional interrogation/manipulation of intracellular signaling pathways with the peptide ‘stapling’ technology. Oncogene 34, 5685–5698 (2015). https://doi.org/10.1038/onc.2015.37

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.37

This article is cited by

Search

Quick links