Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Dysregulated CRTC1 activity is a novel component of PGE2 signaling that contributes to colon cancer growth

Abstract

First identified as a dedicated CREB (cAMP response element-binding protein) co-activator, CRTC1 (CREB-regulated transcription co-activator 1) has been widely implicated in various neuronal functions because of its predominant expression in the brain. However, recent evidences converge to indicate that CRTC1 is aberrantly activated in an expanding number of adult malignancies. In this study, we provide strong evidences of enhanced CRTC1 protein content and transcriptional activity in mouse models of sporadic (APCmin/+ mice) or colitis-associated colon cancer azoxymethane/dextran sulfate sodium (AOM/DSS-treated mice), and in human colorectal tumors specimens compared with adjacent normal mucosa. Among signals that could trigger CRTC1 activation during colonic carcinogenesis, we demonstrate that treatment with cyclooxygenase 2 (COX2) inhibitors reduced nuclear CRTC1 active form levels in colonic tumors of APCmin/+ or AOM/DSS mice. In accordance, prostaglandins E2 (PGE2) exposure to human colon cancer cell lines promoted CRTC1 dephosphorylation and parallel nuclear translocation, resulting in enhanced CRTC1 transcriptional activity, through EP1 and EP2 receptors signaling and consecutive calcineurin and protein kinase A activation. In vitro CRTC1 loss of function in colon cancer cell lines was associated with reduced viability and cell division rate as well as enhanced chemotherapy-induced apoptosis on PGE2 treatment. Conversely, CRTC1 stable overexpression significantly increased colonic xenografts tumor growth, therefore demonstrating the role of CRTC1 signaling in colon cancer progression. Identification of the transcriptional program triggered by enhanced CRTC1 expression during colonic carcinogenesis, revealed some notable pro-tumorigenic CRTC1 target genes including NR4A2, COX2, amphiregulin (AREG) and IL-6. Finally, we demonstrate that COX2, AREG and IL-6 promoter activities triggered by CRTC1 are dependent on functional AP1 and CREB transcriptional partners. Overall, our study establishes CRTC1 as new mediator of PGE2 signaling, unravels the importance of its dysregulation in colon cancer and strengthens its use as a bona fide cancer marker.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Canettieri G, Coni S, Della Guardia M, Nocerino V, Antonucci L, Di Magno L et al. The coactivator CRTC1 promotes cell proliferation and transformation via AP-1. Proc Natl Acad Sci USA 2009; 106: 1445–1450.

    Article  CAS  Google Scholar 

  2. Iourgenko V, Zhang W, Mickanin C, Daly I, Jiang C, Hexham JM et al. Identification of a family of cAMP response element-binding protein coactivators by genome-scale functional analysis in mammalian cells. Proc Natl Acad Sci USA 2003; 100: 12147–12152.

    Article  CAS  Google Scholar 

  3. Altarejos JY, Montminy M . CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol 2011; 12: 141–151.

    Article  CAS  Google Scholar 

  4. Siu YT, Ching YP, Jin DY . Activation of TORC1 transcriptional coactivator through MEKK1-induced phosphorylation. Mol Biol Cell 2008; 19: 4750–4761.

    Article  CAS  Google Scholar 

  5. Breuillaud L, Rossetti C, Meylan EM, Merinat C, Halfon O, Magistretti PJ et al. Deletion of CREB-regulated transcription coactivator 1 induces pathological aggression, depression-related behaviors, and neuroplasticity genes dysregulation in mice. Biol Psychiatry 2012; 72: 528–536.

    Article  CAS  Google Scholar 

  6. Ch'ng TH, Uzgil B, Lin P, Avliyakulov NK, O'Dell TJ, Martin KC . Activity-dependent transport of the transcriptional coactivator CRTC1 from synapse to nucleus. Cell 2012; 150: 207–221.

    Article  CAS  Google Scholar 

  7. Finsterwald C, Martin JL . Cellular mechanisms underlying the regulation of dendritic development by hepatocyte growth factor. Eur J Neurosci 2011; 34: 1053–1061.

    Article  Google Scholar 

  8. Sakamoto K, Norona FE, Alzate-Correa D, Scarberry D, Hoyt KR, Obrietan K . Clock and light regulation of the CREB coactivator CRTC1 in the suprachiasmatic circadian clock. J Neurosci 2013; 33: 9021–9027.

    Article  CAS  Google Scholar 

  9. Sekeres MJ, Mercaldo V, Richards B, Sargin D, Mahadevan V, Woodin MA et al. Increasing CRTC1 function in the dentate gyrus during memory formation or reactivation increases memory strength without compromising memory quality. J Neurosci 2012; 32: 17857–17868.

    Article  CAS  Google Scholar 

  10. Wu Z, Huang X, Feng Y, Handschin C, Feng Y, Gullicksen PS et al. Transducer of regulated CREB-binding proteins (TORCs) induce PGC-1alpha transcription and mitochondrial biogenesis in muscle cells. Proc Natl Acad Sci USA 2006; 103: 14379–14384.

    Article  CAS  Google Scholar 

  11. Altarejos JY, Goebel N, Conkright MD, Inoue H, Xie J, Arias CM et al. The Creb1 coactivator Crtc1 is required for energy balance and fertility. Nat Med 2008; 14: 1112–1117.

    Article  CAS  Google Scholar 

  12. Choong E, Quteineh L, Cardinaux JR, Gholam-Rezaee M, Vandenberghe F, Dobrinas M et al. Influence of CRTC1 polymorphisms on body mass index and fat mass in psychiatric patients and the general adult population. JAMA Psychiatry 2013; 70: 1011–1019.

    Article  CAS  Google Scholar 

  13. Eberhard CE, Fu A, Reeks C, Screaton RA . CRTC2 is required for beta-cell function and proliferation. Endocrinology 2013; 154: 2308–2317.

    Article  CAS  Google Scholar 

  14. Kim SJ, Nian C, Widenmaier S, McIntosh CH . Glucose-dependent insulinotropic polypeptide-mediated up-regulation of beta-cell antiapoptotic Bcl-2 gene expression is coordinated by cyclic AMP (cAMP) response element binding protein (CREB) and cAMP-responsive CREB coactivator 2. Mol Cell Biol 2008; 28: 1644–1656.

    Article  CAS  Google Scholar 

  15. Muraoka M, Fukushima A, Viengchareun S, Lombes M, Kishi F, Miyauchi A et al. Involvement of SIK2/TORC2 signaling cascade in the regulation of insulin-induced PGC-1alpha and UCP-1 gene expression in brown adipocytes. Am J Physiol Endocrinol Metab 2009; 296: E1430–E1439.

    Article  CAS  Google Scholar 

  16. Enlund F, Behboudi A, Andren Y, Oberg C, Lendahl U, Mark J et al. Altered Notch signaling resulting from expression of a WAMTP1-MAML2 gene fusion in mucoepidermoid carcinomas and benign Warthin's tumors. Exp Cell Res 2004; 292: 21–28.

    Article  CAS  Google Scholar 

  17. Tonon G, Modi S, Wu L, Kubo A, Coxon AB, Komiya T et al. t(11;19)(q21;p13) translocation in mucoepidermoid carcinoma creates a novel fusion product that disrupts a Notch signaling pathway. Nat Genet 2003; 33: 208–213.

    Article  CAS  Google Scholar 

  18. Chen Z, Chen J, Gu Y, Hu C, Li JL, Lin S et al. Aberrantly activated AREG-EGFR signaling is required for the growth and survival of CRTC1-MAML2 fusion-positive mucoepidermoid carcinoma cells. Oncogene 2013; 33: 3869–3877.

    Article  Google Scholar 

  19. Coxon A, Rozenblum E, Park YS, Joshi N, Tsurutani J, Dennis PA et al. Mect1-Maml2 fusion oncogene linked to the aberrant activation of cyclic AMP/CREB regulated genes. Cancer Res 2005; 65: 7137–7144.

    Article  CAS  Google Scholar 

  20. Wu L, Liu J, Gao P, Nakamura M, Cao Y, Shen H et al. Transforming activity of MECT1-MAML2 fusion oncoprotein is mediated by constitutive CREB activation. EMBO J 2005; 24: 2391–2402.

    Article  CAS  Google Scholar 

  21. Feng Y, Wang Y, Wang Z, Fang Z, Li F, Gao Y et al. The CRTC1-NEDD9 signaling axis mediates lung cancer progression caused by LKB1 loss. Cancer Res 2012; 72: 6502–6511.

    Article  CAS  Google Scholar 

  22. Gu Y, Lin S, Li JL, Nakagawa H, Chen Z, Jin B et al. Altered LKB1/CREB-regulated transcription co-activator (CRTC) signaling axis promotes esophageal cancer cell migration and invasion. Oncogene 2012; 31: 469–479.

    Article  CAS  Google Scholar 

  23. Kovacs KA, Steullet P, Steinmann M, Do KQ, Magistretti PJ, Halfon O et al. TORC1 is a calcium- and cAMP-sensitive coincidence detector involved in hippocampal long-term synaptic plasticity. Proc Natl Acad Sci USA 2007; 104: 4700–4705.

    Article  CAS  Google Scholar 

  24. Bittinger MA, McWhinnie E, Meltzer J, Iourgenko V, Latario B, Liu X et al. Activation of cAMP response element-mediated gene expression by regulated nuclear transport of TORC proteins. Curr Biol 2004; 14: 2156–2161.

    Article  CAS  Google Scholar 

  25. Conkright MD, Canettieri G, Screaton R, Guzman E, Miraglia L, Hogenesch JB et al. TORCs: transducers of regulated CREB activity. Mol Cell 2003; 12: 413–423.

    Article  CAS  Google Scholar 

  26. Komiya T, Coxon A, Park Y, Chen WD, Zajac-Kaye M, Meltzer P et al. Enhanced activity of the CREB co-activator Crtc1 in LKB1 null lung cancer. Oncogene 2010; 29: 1672–1680.

    Article  CAS  Google Scholar 

  27. Yamada Y, Mori H . Multistep carcinogenesis of the colon in Apc(Min/+) mouse. Cancer Sci 2007; 98: 6–10.

    Article  CAS  Google Scholar 

  28. Chell S, Kaidi A, Williams AC, Paraskeva C . Mediators of PGE2 synthesis and signalling downstream of COX-2 represent potential targets for the prevention/treatment of colorectal cancer. Biochim Biophys Acta 2006; 1766: 104–119.

    CAS  PubMed  Google Scholar 

  29. Kutchera W, Jones DA, Matsunami N, Groden J, McIntyre TM, Zimmerman GA et al. Prostaglandin H synthase 2 is expressed abnormally in human colon cancer: evidence for a transcriptional effect. Proc Natl Acad Sci USA 1996; 93: 4816–4820.

    Article  CAS  Google Scholar 

  30. Sinicrope FA, Lemoine M, Xi L, Lynch PM, Cleary KR, Shen Y et al. Reduced expression of cyclooxygenase 2 proteins in hereditary nonpolyposis colorectal cancers relative to sporadic cancers. Gastroenterology 1999; 117: 350–358.

    Article  CAS  Google Scholar 

  31. Park SW, Kim HS, Choi MS, Jeong WJ, Heo DS, Kim KH et al. The effects of the stromal cell-derived cyclooxygenase-2 metabolite prostaglandin E2 on the proliferation of colon cancer cells. J Pharmacol Exp Ther 2011; 336: 516–523.

    Article  CAS  Google Scholar 

  32. Guzman MJ, Shao J, Sheng H . Pro-neoplastic effects of amphiregulin in colorectal carcinogenesis. J Gastrointest Cancer 2013; 44: 211–221.

    Article  CAS  Google Scholar 

  33. Holla VR, Wu H, Shi Q, Menter DG, DuBois RN . Nuclear orphan receptor NR4A2 modulates fatty acid oxidation pathways in colorectal cancer. J Biol Chem 2011; 286: 30003–30009.

    Article  CAS  Google Scholar 

  34. Nagasaki T, Hara M, Nakanishi H, Takahashi H, Sato M, Takeyama H . Interleukin-6 released by colon cancer-associated fibroblasts is critical for tumour angiogenesis: anti-interleukin-6 receptor antibody suppressed angiogenesis and inhibited tumour-stroma interaction. Br J Cancer 2014; 110: 469–478.

    Article  CAS  Google Scholar 

  35. Waldner MJ, Foersch S, Neurath MF . Interleukin-6—a key regulator of colorectal cancer development. Int J Biol Sci 2012; 8: 1248–1253.

    Article  CAS  Google Scholar 

  36. Wang D, Dubois RN . The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene 2010; 29: 781–788.

    Article  CAS  Google Scholar 

  37. Zagani R, Hamzaoui N, Cacheux W, de Reynies A, Terris B, Chaussade S et al. Cyclooxygenase-2 inhibitors down-regulate osteopontin and Nr4A2-new therapeutic targets for colorectal cancers. Gastroenterology 2009; 137: e1351–e1353.

    Article  Google Scholar 

  38. Liu Y, Dentin R, Chen D, Hedrick S, Ravnskjaer K, Schenk S et al. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature 2008; 456: 269–273.

    Article  CAS  Google Scholar 

  39. Ravnskjaer K, Kester H, Liu Y, Zhang X, Lee D, Yates JR 3rd et al. Cooperative interactions between CBP and TORC2 confer selectivity to CREB target gene expression. EMBO J 2007; 26: 2880–2889.

    Article  CAS  Google Scholar 

  40. Dentin R, Liu Y, Koo SH, Hedrick S, Vargas T, Heredia J et al. Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2. Nature 2007; 449: 366–369.

    Article  CAS  Google Scholar 

  41. MacKenzie KF, Clark K, Naqvi S, McGuire VA, Noehren G, Kristariyanto Y et al. PGE(2) induces macrophage IL-10 production and a regulatory-like phenotype via a protein kinase A-SIK-CRTC3 pathway. J Immunol 2013; 190: 565–577.

    Article  CAS  Google Scholar 

  42. Samarajeewa NU, Docanto MM, Simpson ER, Brown KA . CREB-regulated transcription co-activator family stimulates promoter II-driven aromatase expression in preadipocytes. Horm Cancer 2013; 4: 233–241.

    Article  CAS  Google Scholar 

  43. Rasmuson A, Kock A, Fuskevag OM, Kruspig B, Simon-Santamaria J, Gogvadze V et al. Autocrine prostaglandin E2 signaling promotes tumor cell survival and proliferation in childhood neuroblastoma. PLoS One 2012; 7: e29331.

    Article  CAS  Google Scholar 

  44. Sonoshita M, Takaku K, Sasaki N, Sugimoto Y, Ushikubi F, Narumiya S et al. Acceleration of intestinal polyposis through prostaglandin receptor EP2 in Apc(Delta 716) knockout mice. Nat Med 2001; 7: 1048–1051.

    Article  CAS  Google Scholar 

  45. Cao C, Gao R, Zhang M, Amelio AL, Fallahi M, Chen Z et al. Role of LKB1-CRTC1 on glycosylated COX-2 and response to COX-2 inhibition in lung cancer. J Natl Cancer Inst 2015; 107: 358.

    Article  Google Scholar 

  46. De Leng WW, Westerman AM, Weterman MA, De Rooij FW, Dekken HvH, De Goeij AF et al. Cyclooxygenase 2 expression and molecular alterations in Peutz-Jeghers hamartomas and carcinomas. Clin Cancer Res 2003; 9: 3065–3072.

    CAS  PubMed  Google Scholar 

  47. Takeda H, Miyoshi H, Tamai Y, Oshima M, Taketo MM . Simultaneous expression of COX-2 and mPGES-1 in mouse gastrointestinal hamartomas. Br J Cancer 2004; 90: 701–704.

    Article  CAS  Google Scholar 

  48. Hu M, Peluffo G, Chen H, Gelman R, Schnitt S, Polyak K . Role of COX-2 in epithelial-stromal cell interactions and progression of ductal carcinoma in situ of the breast. Proc Natl Acad Sci USA 2009; 106: 3372–3377.

    Article  CAS  Google Scholar 

  49. Konstantinopoulos PA, Vandoros GP, Karamouzis MV, Gkermpesi M, Sotiropoulou-Bonikou G, Papavassiliou AG . EGF-R is expressed and AP-1 and NF-kappaB are activated in stromal myofibroblasts surrounding colon adenocarcinomas paralleling expression of COX-2 and VEGF. Cell Oncol 2007; 29: 477–482.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Clark K, MacKenzie KF, Petkevicius K, Kristariyanto Y, Zhang J, Choi HG et al. Phosphorylation of CRTC3 by the salt-inducible kinases controls the interconversion of classically activated and regulatory macrophages. Proc Natl Acad Sci USA 2012; 109: 16986–16991.

    Article  CAS  Google Scholar 

  51. Alvarez Y, Municio C, Alonso S, Sanchez Crespo M, Fernandez N . The induction of IL-10 by zymosan in dendritic cells depends on CREB activation by the coactivators CREB-binding protein and TORC2 and autocrine PGE2. J Immunol 2009; 183: 1471–1479.

    Article  CAS  Google Scholar 

  52. Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W . Interleukin-10-deficient mice develop chronic enterocolitis. Cell 1993; 75: 263–274.

    Article  CAS  Google Scholar 

  53. Shouval DS, Ouahed J, Biswas A, Goettel JA, Horwitz BH, Klein C et al. Interleukin 10 receptor signaling: master regulator of intestinal mucosal homeostasis in mice and humans. Adv Immunol 2014; 122: 177–210.

    Article  CAS  Google Scholar 

  54. Galizia G, Orditura M, Romano C, Lieto E, Castellano P, Pelosio L et al. Prognostic significance of circulating IL-10 and IL-6 serum levels in colon cancer patients undergoing surgery. Clin Immunol 2002; 102: 169–178.

    Article  CAS  Google Scholar 

  55. Mocellin S, Marincola FM, Young HA . Interleukin-10 and the immune response against cancer: a counterpoint. J Leukoc Biol 2005; 78: 1043–1051.

    Article  CAS  Google Scholar 

  56. Li B, Alli R, Vogel P, Geiger TL . IL-10 modulates DSS-induced colitis through a macrophage-ROS-NO axis. Mucosal Immunol 2014; 7: 869–878.

    Article  CAS  Google Scholar 

  57. Gunderson LL, Jessup JM, Sargent DJ, Greene FL, Stewart AK . Revised TN categorization for colon cancer based on national survival outcomes data. J Clin Oncol 2010; 28: 264–271.

    Article  Google Scholar 

  58. Suzawa T, Miyaura C, Inada M, Maruyama T, Sugimoto Y, Ushikubi F et al. The role of prostaglandin E receptor subtypes (EP1, EP2, EP3, and EP4) in bone resorption: an analysis using specific agonists for the respective EPs. Endocrinology 2000; 141: 1554–1559.

    Article  CAS  Google Scholar 

  59. Kucharzik T, Lugering N, Winde G, Domschke W, Stoll R . Colon carcinoma cell lines stimulate monocytes and lamina propria mononuclear cells to produce IL-10. Clin Exp Immunol 1997; 110: 296–302.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Cancéropôle IdF funding source that made Yoann Schumacher PhD work possible. Otherwise, the studies were supported by grants from the Paris Descartes University, INSERM and the ARC research foundation against cancer. The authors are indebted to the Cochin Institute Transcriptomic Facility for technical help. The authors also thank (i) J Mathieu (Institut Cochin, Inserm U1016, Paris, France) for providing mouse BM-derived macrophage-conditioned media, (ii) Y Attie and D Vignjevic for providing human cancer associated fibroblasts conditioned media (Institut Curie, UMR144, Paris, France) and (ii) Ono Pharmaceutical Co. Ltd (Osaka, Japan) for providing PGE2 receptor subtype agonists. The authors are grateful to AF. Burnol (Institut Cochin, Inserm U1016, Paris, France), J Lebihan and M Legall (Centre de Recherche sur l'Inflammation Paris Montmartre, Inserm UMRS 1149, Paris, France), M Moldes (INSERM UMRS 938, Paris, France) and S Thenet (Centre de Recherche des Cordeliers, UMRS 1138, Paris, France) for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Guilmeau.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schumacher, Y., Aparicio, T., Ourabah, S. et al. Dysregulated CRTC1 activity is a novel component of PGE2 signaling that contributes to colon cancer growth. Oncogene 35, 2602–2614 (2016). https://doi.org/10.1038/onc.2015.283

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.283

This article is cited by

Search

Quick links