Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Regulation of CD44E by DARPP-32-dependent activation of SRp20 splicing factor in gastric tumorigenesis

Subjects

Abstract

CD44E is a frequently overexpressed variant of CD44 in gastric cancer. Mechanisms that regulate CD44 splicing and expression in gastric cancer remain unknown. Herein, we investigated the role of DARPP-32 (dopamine and cyclic adenosine monophosphate-regulated phosphoprotein, Mr 32000) in promoting tumor growth through regulation of CD44 splicing. Using western blot and quantitative real-time PCR analysis, our results indicated that knockdown of endogenous DARPP-32 markedly reduces the expression of CD44 V8-V10 (CD44E). Using a quantitative splicing luciferase reporter system, we detected a significant increase in the reporter activity following DARPP-32 overexpression (P<0.001). Conversely, knocking down endogenous DARPP-32 significantly attenuated the splicing activity (P<0.001). Further experiments showed that DARPP-32 regulates the expression of SRp20 splicing factor and co-exists with it in the same protein complex. Inhibition of alternative splicing with digitoxin followed by immunoprecipitation and immunoblotting indicated that DARPP-32 has an important role in regulating SRp20 protein stability. The knockdown of endogenous DARPP-32 confirmed that DARPP-32 regulates the SRp20-dependent CD44E splicing. Using tumor xenograft mouse model, knocking down endogenous DARPP-32 markedly reduced SRp20 and CD44E protein levels with a decreased tumor growth. The reconstitution of SRp20 expression in these cells rescued tumor growth. In addition, we also demonstrated frequent co-overexpression and positive correlation of DARPP-32, SRp20 and CD44E expression levels in human gastric primary tumors. Our novel findings establish for the first time the role of DARPP-32 in regulating splicing factors in gastric cancer cells. The DARPP-32–SRp20 axis has a key role in regulating the CD44E splice variant that promotes gastric tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D . Global cancer statistics. CA Cancer J Clin 2011; 61: 69–90.

    PubMed  Google Scholar 

  2. Mukherjee K, Peng D, Brifkani Z, Belkhiri A, Pera M, Koyama T et al. Dopamine and cAMP regulated phosphoprotein MW 32 kDa is overexpressed in early stages of gastric tumorigenesis. Surgery 2010; 148: 354–363.

    Article  PubMed  Google Scholar 

  3. El-Rifai W, Smith MF Jr, Li G, Beckler A, Carl VS, Montgomery E et al. Gastric cancers overexpress DARPP-32 and a Novel Isoform, t-DARPP. Cancer Res 2002; 62: 4061–4064.

    CAS  PubMed  Google Scholar 

  4. Belkhiri A, Zaika A, Pidkovka N, Knuutila S, Moskaluk C, El-Rifai W . Darpp-32: a novel antiapoptotic gene in upper gastrointestinal carcinomas. Cancer Res 2005; 65: 6583–6592.

    Article  CAS  PubMed  Google Scholar 

  5. Zhu S, Belkhiri A, El-Rifai W . DARPP-32 increases interactions between epidermal growth factor receptor and ERBB3 to promote tumor resistance to gefitinib. Gastroenterology 2011; 141: 1738–48 e2.

    Article  CAS  PubMed  Google Scholar 

  6. Zhu S, Hong J, Tripathi MK, Sehdev V, Belkhiri A, El-Rifai W . Regulation of CXCR4-mediated invasion by DARPP-32 in gastric cancer cells. Mol Cancer Res 2012; 11: 86–94.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Goodison S, Urquidi V, Tarin D . CD44 cell adhesion molecules. Mol Pathol 1999; 52: 189–196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pall T, Pink A, Kasak L, Turkina M, Anderson W, Valkna A et al. Soluble CD44 interacts with intermediate filament protein vimentin on endothelial cell surface. PLoS One 2011; 6: e29305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hiraga T, Ito S, Nakamura H . Cancer stem-like cell marker CD44 promotes bone metastases by enhancing tumorigenicity, cell motility, and hyaluronan production. Cancer Res 2013; 73: 4112–4122.

    Article  CAS  PubMed  Google Scholar 

  10. Klingbeil P, Natrajan R, Everitt G, Vatcheva R, Marchio C, Palacios J et al. CD44 is overexpressed in basal-like breast cancers but is not a driver of 11p13 amplification. Breast Cancer Res Treat 2010; 120: 95–109.

    Article  CAS  PubMed  Google Scholar 

  11. Screaton GR, Bell MV, Jackson DG, Cornelis FB, Gerth U, Bell JI . Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons. Proc Natl Acad Sci USA 1992; 89: 12160–12164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Omara-Opyene AL, Qiu J, Shah GV, Iczkowski KA . Prostate cancer invasion is influenced more by expression of a CD44 isoform including variant 9 than by Muc18. Lab Invest 2004; 84: 894–907.

    Article  CAS  PubMed  Google Scholar 

  13. Heider KH, Dammrich J, Skroch-Angel P, Muller-Hermelink HK, Vollmers HP, Herrlich P et al. Differential expression of CD44 splice variants in intestinal- and diffuse-type human gastric carcinomas and normal gastric mucosa. Cancer Res 1993; 53: 4197–4203.

    CAS  PubMed  Google Scholar 

  14. Muramaki M, Miyake H, Kamidono S, Hara I . Over expression of CD44V8-10 in human bladder cancer cells decreases their interaction with hyaluronic acid and potentiates their malignant progression. J Urol 2004; 171: 426–430.

    Article  CAS  PubMed  Google Scholar 

  15. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C et al. Alternative isoform regulation in human tissue transcriptomes. Nature 2008; 456: 470–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xi L, Feber A, Gupta V, Wu M, Bergemann AD, Landreneau RJ et al. Whole genome exon arrays identify differential expression of alternatively spliced, cancer-related genes in lung cancer. Nucleic Acids Res 2008; 36: 6535–6547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Long JC, Caceres JF . The SR protein family of splicing factors: master regulators of gene expression. Biochem J 2009; 417: 15–27.

    Article  CAS  PubMed  Google Scholar 

  18. Erkelenz S, Mueller WF, Evans MS, Busch A, Schoneweis K, Hertel KJ et al. Position-dependent splicing activation and repression by SR and hnRNP proteins rely on common mechanisms. RNA 2012; 19: 96–102.

    Article  PubMed  Google Scholar 

  19. Cavaloc Y, Bourgeois CF, Kister L, Stevenin J . The splicing factors 9G8 and SRp20 transactivate splicing through different and specific enhancers. RNA 1999; 5: 468–483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Matlin AJ, Clark F, Smith CW . Understanding alternative splicing: towards a cellular code. Nat Rev Mol Cell Biol 2005; 6: 386–398.

    Article  CAS  PubMed  Google Scholar 

  21. Jia R, Li C, McCoy JP, Deng CX, Zheng ZM . SRp20 is a proto-oncogene critical for cell proliferation and tumor induction and maintenance. Int J Biol Sci 2010; 6: 806–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Biamonti G, Ghigna C, Caporali R, Montecucco C . Heterogeneous nuclear ribonucleoproteins (hnRNPs): an emerging family of autoantigens in rheumatic diseases. Clin Exp Rheumatol 1998; 16: 317–326.

    CAS  PubMed  Google Scholar 

  23. Ponta H, Sherman L, Herrlich PA . CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 2003; 4: 33–45.

    Article  CAS  PubMed  Google Scholar 

  24. da Cunha CB, Oliveira C, Wen X, Gomes B, Sousa S, Suriano G et al. De novo expression of CD44 variants in sporadic and hereditary gastric cancer. Lab Invest 2010; 90: 1604–1614.

    Article  PubMed  Google Scholar 

  25. Younis I, Berg M, Kaida D, Dittmar K, Wang C, Dreyfuss G . Rapid-response splicing reporter screens identify differential regulators of constitutive and alternative splicing. Mol Cell Biol 2010; 30: 1718–1728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Anderson ES, Lin CH, Xiao X, Stoilov P, Burge CB, Black DL . The cardiotonic steroid digitoxin regulates alternative splicing through depletion of the splicing factors SRSF3 and TRA2B. RNA 2012; 18: 1041–1049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Beckler A, Moskaluk CA, Zaika A, Hampton GM, Powell SM, Frierson HF Jr et al. Overexpression of the 32-kilodalton dopamine and cyclic adenosine 3',5'-monophosphate-regulated phosphoprotein in common adenocarcinomas. Cancer 2003; 98: 1547–1551.

    Article  CAS  PubMed  Google Scholar 

  28. Wang MS, Pan Y, Liu N, Guo C, Hong L, Fan D . Overexpression of DARPP-32 in colorectal adenocarcinoma. Int J Clin Pract 2005; 59: 58–61.

    Article  CAS  PubMed  Google Scholar 

  29. Belkhiri A, Dar AA, Peng DF, Razvi MH, Rinehart C, Arteaga CL et al. Expression of t-DARPP mediates trastuzumab resistance in breast cancer cells. Clin Cancer Res 2008; 14: 4564–4571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hamel S, Bouchard A, Ferrario C, Hassan S, Aguilar-Mahecha A, Buchanan M et al. Both t-Darpp and DARPP-32 can cause resistance to trastuzumab in breast cancer cells and are frequently expressed in primary breast cancers. Breast Cancer Res Treat 2009; 120: 47–57.

    Article  PubMed  Google Scholar 

  31. Cohen-Eliav M, Golan-Gerstl R, Siegfried Z, Andersen CL, Thorsen K, Orntoft TF et al. The splicing factor SRSF6 is amplified and is an oncoprotein in lung and colon cancers. J Pathol 2013; 229: 630–639.

    Article  CAS  PubMed  Google Scholar 

  32. Caceres JF, Misteli T, Screaton GR, Spector DL, Krainer AR . Role of the modular domains of SR proteins in subnuclear localization and alternative splicing specificity. J Cell Biol 1997; 138: 225–238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jia R, Liu X, Tao M, Kruhlak M, Guo M, Meyers C et al. Control of the papillomavirus early-to-late switch by differentially expressed SRp20. J Virol 2009; 83: 167–180.

    Article  CAS  PubMed  Google Scholar 

  34. Miwa T, Watanabe A, Yamada Y, Shino Y, Yamada T, Yamashita J et al. Progression in gastric carcinoma relative to the ratio of CD44 epithelial variant transcript to CD44 hematopoietic variant transcript. Cancer 1996; 77: 25–29.

    Article  CAS  PubMed  Google Scholar 

  35. Prochazka L, Tesarik R, Turanek J . Regulation of alternative splicing of CD44 in cancer. Cell Signal 2014; 26: 2234–2239.

    Article  CAS  PubMed  Google Scholar 

  36. Bourguignon LY, Zhu D, Zhu H . CD44 isoform-cytoskeleton interaction in oncogenic signaling and tumor progression. Front Biosci 1998; 3: d637–d649.

    Article  CAS  PubMed  Google Scholar 

  37. Lau WM, Teng E, Chong HS, Lopez KA, Tay AY, Salto-Tellez M et al. CD44v8-10 is a cancer-specific marker for gastric cancer stem cells. Cancer Res 2014; 74: 2630–2641.

    Article  CAS  PubMed  Google Scholar 

  38. Takeuchi K, Yamaguchi A, Urano T, Goi T, Nakagawara G, Shiku H . Expression of CD44 variant exons 8-10 in colorectal cancer and its relationship to metastasis. Jpn J Cancer Res 1995; 86: 292–297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pfaffl MW . A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29: e45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Institutes of Health (R01CA93999); Vanderbilt SPORE in Gastrointestinal Cancer (P50 CA95103); Vanderbilt Ingram Cancer Center (P30 CA68485); the Vanderbilt Digestive Disease Research Center (DK058404), and the Department of Veterans Affairs. The contents of this work are solely the responsibility of the authors and do not necessarily represent the official views of the National Institutes of Health, Department of Veterans Affairs or Vanderbilt University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W El-Rifai.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Chen, Z., Katsha, A. et al. Regulation of CD44E by DARPP-32-dependent activation of SRp20 splicing factor in gastric tumorigenesis. Oncogene 35, 1847–1856 (2016). https://doi.org/10.1038/onc.2015.250

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.250

This article is cited by

Search

Quick links