Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

ΔNp63 targets cytoglobin to inhibit oxidative stress-induced apoptosis in keratinocytes and lung cancer

Subjects

Abstract

During physiological aerobic metabolism, the epidermis undergoes significant oxidative stress as a result of the production of reactive oxygen species (ROS). To maintain a balanced oxidative state, cells have developed protective antioxidant systems, and preliminary studies suggest that the transcriptional factor p63 is involved in cellular oxidative defence. Supporting this hypothesis, the ΔNp63α isoform of p63 is expressed at high levels in the proliferative basal layer of the epidermis. Here we identify the CYGB gene as a novel transcriptional target of ΔNp63 that is involved in maintaining epidermal oxidative defence. The CYGB gene encodes cytoglobin, a member of the globin protein family, which facilitates the diffusion of oxygen through tissues and acts as a scavenger for nitric oxide or other ROS. By performing promoter activity assays and chromatin immunoprecipitation, reverse transcriptase quantitative PCR and western blotting analyses, we confirm the direct regulation of CYGB by ΔNp63α. We also demonstrate that CYGB has a protective role in proliferating keratinocytes grown under normal conditions, as well as in cells treated with exogenous hydrogen peroxide. These results indicate that ΔNp63, through its target CYGB has an important role in the cellular antioxidant system and protects keratinocytes from oxidative stress-induced apoptosis. The ΔNp63–CYGB axis is also present in lung and breast cancer cell lines, indicating that CYGB-mediated ROS-scavenging activity may also have a role in epithelial tumours. In human lung cancer data sets, the p63–CYGB interaction significantly predicts reduction of patient survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dotsch V et al. p63, a p53 homolog at 3q27–29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell 1998; 2: 305–316.

    Article  CAS  PubMed  Google Scholar 

  2. Candi E, Dinsdale D, Rufini A, Salomoni P, Knight RA, Mueller M et al. TAp63 and DeltaNp63 in cancer and epidermal development. Cell Cycle 2007; 6: 274–285.

    Article  CAS  PubMed  Google Scholar 

  3. Vanbokhoven H, Melino G, Candi E, Declercq W . p63, a story of mice and men. J Invest Dermatol 2011; 131: 1196–1207.

    Article  CAS  PubMed  Google Scholar 

  4. Rinne T, Clements SE, Lamme E, Duijf PH, Bolat E, Meijer R et al. A novel translation re-initiation mechanism for the p63 gene revealed by amino-terminal truncating mutations in Rapp-Hodgkin/Hay-Wells-like syndromes. Hum Mol Genet 2008; 17: 1968–1977.

    Article  CAS  PubMed  Google Scholar 

  5. Crum CP, McKeon FD . p63 in epithelial survival, germ cell surveillance, and neoplasia. Annu Rev Pathol 2010; 5: 349–371.

    Article  CAS  PubMed  Google Scholar 

  6. Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 1999; 398: 714–718.

    Article  CAS  PubMed  Google Scholar 

  7. Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A . p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 1999; 398: 708–713.

    Article  CAS  PubMed  Google Scholar 

  8. Candi E, Rufini A, Terrinoni A, Dinsdale D, Ranalli M, Paradisi A et al. Differential roles of p63 isoforms in epidermal development: selective genetic complementation in p63 null mice. Cell Death Differ 2006; 13: 1037–4.

    Article  CAS  PubMed  Google Scholar 

  9. Candi E, Rufini A, Terrinoni A, Giamboi-Miraglia A, Lena AM, Mantovani R et al. DeltaNp63 regulates thymic development through enhanced expression of FgfR2 and Jag2. Proc Natl Acad Sci USA 2007; 104: 11999–12004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Romano RA, Smalley K, Magraw C, Serna VA, Kurita T, Raghavan S et al. DeltaNp63 knockout mice reveal its indispensable role as a master regulator of epithelial development and differentiation. Development 2012; 139: 772–782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rufini A, Weil M, McKeon F, Barlattani A, Melino G, Candi E . p63 protein is essential for the embryonic development of vibrissae and teeth. Biochem Biophys Res Commun 2006; 340: 737–741.

    Article  CAS  PubMed  Google Scholar 

  12. Laurikkala J, Mikkola ML, James M, Tummers M, Mills AA, Thesleff I . p63 regulates multiple signalling pathways required for ectodermal organogenesis and differentiation. Development 2006; 133: 1553–1563.

    Article  CAS  PubMed  Google Scholar 

  13. Shalom-Feuerstein R, Lena AM, Zhou H, De La Forest Divonne S, Van Bokhoven H, Candi E et al. ΔNp63 is an ectodermal gatekeeper of epidermal morphogenesis. Cell Death Differ 2011; 18: 887–896.

    Article  CAS  PubMed  Google Scholar 

  14. Lena AM, Cipollone R, Amelio I, Catani MV, Ramadan S, Browne G et al. Skn-1a/Oct-11 and ΔNp63α exert antagonizing effects on human keratin expression. Biochem Biophys Res Commun 2010; 401: 568–573.

    Article  CAS  PubMed  Google Scholar 

  15. Candi E, Cipollone R, Rivetti di Val Cervo P, Gonfloni S, Melino G, Knight R . p63 in epithelial development. Cell Mol Life Sci 2008; 65: 3126–3133.

    Article  CAS  PubMed  Google Scholar 

  16. Candi E, Terrinoni A, Rufini A, Chikh A, Lena AM, Suzuki Y et al. p63 is upstream of IKK alpha in epidermal development. J Cell Sci 2006; 119: 4617–4622.

    Article  CAS  PubMed  Google Scholar 

  17. Senoo M, Pinto F, Crum CP, McKeon F . p63 is essential for the proliferative potential of stem cells in stratified epithelia. Cell 2007; 129: 523–536.

    Article  CAS  PubMed  Google Scholar 

  18. Truong AB, Kretz M, Ridky TW, Kimmel R, Khavari PA . p63 regulates proliferation and differentiation of developmentally mature keratinocytes. Genes Dev 2006; 20: 3185–3197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nguyen BC, Lefort K, Mandinova A, Antonini D, Devgan V, Della Gatta G et al. Cross-regulation between Notch and p63 in keratinocyte commitment to differentiation. Genes Dev 2006; 20: 1028–1042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Borrelli S, Candi E, Hu B, Dolfini D, Ravo M, Grober OM et al. The p63 target HBP1 is required for skin differentiation and stratification. Cell Death Differ 2010; 17: 1896–1907.

    Article  CAS  PubMed  Google Scholar 

  21. Carroll DK, Carroll JS, Leong CO, Cheng F, Brown M, Mills AA et al. p63 regulates an adhesion programme and cell survival in epithelial cells. Nat Cell Biol 2006; 8: 551–561.

    Article  CAS  PubMed  Google Scholar 

  22. Ihrie RA, Marques MR, Nguyen BT, Horner JS, Papazoglu C et al. Perp is a p63-regulated gene essential for epithelial integrity. Cell 2005; 120: 843–856.

    Article  CAS  PubMed  Google Scholar 

  23. Yan W, Chen X . GPX2, a direct target of p63, inhibits oxidative stress-induced apoptosis in a p53-dependent manner. J Biol Chem 2006; 281: 7856–7862.

    Article  CAS  PubMed  Google Scholar 

  24. Ellisen LW, Ramsayer KD, Johannessen CM, Yang A, Beppu H, Minda K et al. REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species. Mol Cell 2002; 10: 995–1005.

    Article  CAS  PubMed  Google Scholar 

  25. Liu G, Chen X . The ferredoxin reductase gene is regulated by the p53 family and sensitizes cells to oxidative stress-induced apoptosis. Oncogene 2002; 21: 7195–7204.

    Article  CAS  PubMed  Google Scholar 

  26. Allen RG, Tresini M . Oxidative stress and gene regulation. Free Radic Biol Med 2000; 28: 463–499.

    Article  CAS  PubMed  Google Scholar 

  27. Budanov AV . Stress-responsive sestrins link p53 with redox regulation and mammalian target of rapamycin signaling. Antioxid Redox Signal 2011; 15: 6–10.

    Article  CAS  Google Scholar 

  28. Bause AS, Matsui M, Haigis MC . The protein deacetylase SIRT3 prevents oxidative stress-induced keratinocyte differentiation. J Biol Chem 2013; 288: 36484–36491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dhar A, Young MR, Colburn NH . The role of AP-1, NF-kappaB and ROS/NOS in skin carcinogenesis: the JB6 model is predictive. Mol Cell Biochem 2002; 235: 185–193.

    Article  Google Scholar 

  30. Bickers DR, Athar M . Oxidative stress in the pathogenesis of skin disease. J Invest Dermatol 2006; 126: 2565–2575.

    Article  CAS  PubMed  Google Scholar 

  31. Wajcman H, Kiger L, Marden MC . Structure and function evolution in the superfamily of globins. C R Biol 2009; 332: 273–282.

    Article  CAS  PubMed  Google Scholar 

  32. Burmester T, Ebner B, Weich B, Hankeln T . Cytoglobin: a novel globin type ubiquitously expressed in vertebrate tissues. Mol Biol Evol 2002; 19: 416–442.

    Article  CAS  PubMed  Google Scholar 

  33. Schmidt M, Gerlach F, Avivi A, Laufs T, Wystub S, Simpson JC et al. Cytoglobin is a respiratory protein in connective tissue and neurons, which is up-regulated by hypoxia. J Biol Chem 2004; 279: 8063–8069.

    Article  CAS  PubMed  Google Scholar 

  34. John R, Chand V, Chakraborty S, Jaiswal N, Nag A . DNA damage induced activation of Cygb stabilizes p53 and mediates G1 arrest. DNA Repair 2014; 24: 107–112.

    Article  CAS  PubMed  Google Scholar 

  35. Fordel E, Geuens E, Dewilde S, Rottiers P, Carmeliet P, Grooten J et al. Cytoglobin expression is upregulated in all tissues upon hypoxia: an in vitro and in vivo study by quantitative real-time PCR. Biochem Biophys Res Commun 2004; 319: 342–348.

    Article  CAS  PubMed  Google Scholar 

  36. Yu X, Gao D . Overexpression of cytoglobin gene inhibits hypoxic injury to SH-SY5Y neuroblastoma cells. Neural Regen Res 2013; 8: 2198–2203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fordel E, Thijs L, Martinet W, Lenjou M, Laufs T, Van Bockstaele D et al. Neuroglobin and cytoglobin overexpression protects human SH-SY5Y neuroblastoma cells against oxidative stress-induced cell death. Neurosci Lett 2007; 410: 146–151.

    Article  CAS  Google Scholar 

  38. Stagner JI, Parthasarathy SN, Wyler K, Parthasarathy RN . Protection from ischemic cell death by the induction of cytoglobin. Transplant Proc 2005; 37: 3452–3453.

    Article  CAS  PubMed  Google Scholar 

  39. Shaw RJ, Omar MM, Rokadiya S, Kogera FA, Lowe D, Hall G L et al. Cytoglobin is upregulated by tumour hypoxia and silenced by promoter hypermethylation in head and neck cancer. Br J Cancer 2009; 101: 139–144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rivetti di Val, Cervo P, Lena AM, Nicoloso M, Rossi S, Mancini M et al. p63-microRNA feedback in keratinocyte senescence. Proc Natl Acad Sci USA 2012; 109: 1133–1138.

    Article  Google Scholar 

  41. Katsuyama M, Matsuno K, Yabe-Nishimura C . Physiological roles of NOX/NADPH oxidase, the superoxide-generating enzyme. J Clin Biochem Nutr 2012; 50: 9–22.

    Article  CAS  PubMed  Google Scholar 

  42. Massion PP, Taflan PM, Jamshedur Rahman SM, Yildiz P, Shyr Y, Edgerton ME et al. Significance of p63 amplification and overexpression in lung cancer development and prognosis. Cancer Res 2003; 63: 7113–7121.

    CAS  PubMed  Google Scholar 

  43. Ramsey MR, Wilson C, Ory B, Rothenberg SM, Faquin W, Mills AA et al. FGFR2 signaling underlies p63 oncogenic function in squamous cell carcinoma. J Clin Invest 2013; 123: 3525–3538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Park ES, Kim SD, Lee MH, Lee HS, Lee IS, Sung JK et al. Protective effects of N-acetylcysteine and selenium against doxorubicin toxicity in rats. J Vet Sci 2003; 4: 129–136.

    Article  PubMed  Google Scholar 

  45. Liefer KM, Koster MI, Wang XJ, Yang A, McKeon F, Roop DR . Down-regulation of p63 is required for epidermal UV-B-induced apoptosis. Cancer Res 2000; 60: 4016–4020.

    CAS  PubMed  Google Scholar 

  46. Ogawa E, Okuyama R, Ikawa S, Nagoshi H, Egawa T, Kurihara A et al. p51/p63 Inhibits ultraviolet B-induced apoptosis via Akt activation. Oncogene 2008; 27: 848–856.

    Article  CAS  PubMed  Google Scholar 

  47. Kenyon CJ . The genetics of ageing. Nature 2010; 464: 504–512.

    Article  CAS  PubMed  Google Scholar 

  48. Balaban RS, Nemoto S, Finkel T . Mitochondria, oxidants, and aging. Cell 2005; 120: 483–495.

    Article  CAS  PubMed  Google Scholar 

  49. d'Adda di Fagagna F . Living on a break: cellular senescence as a DNA-damage response. Nat Rev Cancer 2008; 8: 512–522.

    Article  CAS  PubMed  Google Scholar 

  50. Adams PD . Healing and hurting: molecular mechanisms, functions, and pathologies of cellular senescence. Mol Cell 2009; 36: 2–14.

    Article  CAS  PubMed  Google Scholar 

  51. Rufini A, Niklison-Chirou MV, Inoue S, Tomasini R, Harris IS, Marino A et al. TAp73 depletion accelerates aging through metabolic dysregulation. Genes Dev 2012; 26: 2009–2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Italiano D, Lena AM, Melino G, Candi E . Identification of NCF2/p67phox as a novel p53 target gene. Cell Cycle 2012; 11: 4589–4596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Patel A, Burton DG, Halvorsen K, Balkan W, Reiner T, Perez-Stable C et al. MutT Homolog 1 (MTH1) maintains multiple KRAS-driven pro-malignant pathways. Oncogene 2014; 34: 2586–2596.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Leikam C, Hufnagel A, Walz S, Kneitz S, Fekete A, Müller MJ et al. Cystathionase mediates senescence evasion in melanocytes and melanoma cells. Oncogene 2014; 33: 771–782.

    Article  CAS  PubMed  Google Scholar 

  55. Wolyniec K, Levav-Cohen Y, Jiang YH, Haupt S, Haupt Y . The E6AP E3 ubiquitin ligase regulates the cellular response to oxidative stress. Oncogene 2013; 32: 3510–3519.

    Article  CAS  PubMed  Google Scholar 

  56. Nakanome A, Brydun A, Matsumoto M, Ota K, Funayama R, Nakayama K et al. Bach1 is critical for the transformation of mouse embryonic fibroblasts by Ras(V12) and maintains ERK signaling. Oncogene 2013; 32: 3231–3245.

    Article  CAS  PubMed  Google Scholar 

  57. Agrelo R, Kishimoto H, Novatchkova M, Peraza V, Paolino M, Souabni A et al. SATB1 collaborates with loss of p16 in cellular transformation. Oncogene 2013; 32: 5492–5500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gao B, Li K, Wei YY, Zhang J, Li J, Zhang L et al. Zinc finger protein 637 protects cells against oxidative stress-induced premature senescence by mTERT-mediated telomerase activity and telomere maintenance. Cell Death Dis 2014; 5: e1334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li C, Chang DL, Yang Z, Qi J, Liu R, He H et al. Pin1 modulates p63α protein stability in regulation of cell survival, proliferation and tumor formation. Cell Death Dis 2013; 4: e943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Burnley P, Rahman M, Wang H, Zhang Z, Sun X, Zhuge Q et al. Role of the p63-FoxN1 regulatory axis in thymic epithelial cell homeostasis during aging. Cell Death Dis 2013; 4: e932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wiel C, Augert A, Vincent DF, Gitenay D, Vindrieux D, Le Calvé B et al. Lysyl oxidase activity regulates oncogenic stress response and tumorigenesis. Cell Death Dis 2013; 4: e855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wansleben S, Davis E, Peres J, Prince S . A novel role for the anti-senescence factor TBX2 in DNA repair and cisplatin resistance. Cell Death Dis 2013; 4: e846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Paris M, Rouleau M, Pucéat M, Aberdam D . Regulation of skin aging and heart development by TAp63. Cell Death Differ 2012; 19: 186–193.

    Article  CAS  PubMed  Google Scholar 

  64. Sommer M, Poliak N, Upadhyay S, Ratovitski E, Nelkin BD, Donehower LA et al. DeltaNp63alpha overexpression induces downregulation of Sirt1 and an accelerated aging phenotype in the mouse. Cell Cycle 2006; 5: 2005–2011.

    Article  CAS  PubMed  Google Scholar 

  65. Keyes WM, Wu Y, Vogel H, Guo X, Lowe SW, Mills AA . p63 deficiency activates a program of cellular senescence and leads to accelerated aging. Genes Dev 2005; 19: 1986–1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. DeYoung MP, Johannessen CM, Leong CO, Faquin W, Rocco JW, Ellisen LW . Tumor-specific p73 up-regulation mediates p63 dependence in squamous cell carcinoma. Cancer Res 2006; 66: 9362–9368.

    Article  CAS  PubMed  Google Scholar 

  67. Ramsey MR, He L, Forster N, Ory B, Ellisen LW . Physical association of HDAC1 and HDAC2 with p63 mediates transcriptional repression and tumor maintenance in squamous cell carcinoma. Cancer Res 2011; 1: 4373–4379.

    Article  CAS  Google Scholar 

  68. Genin O, Rechavi G, Nagler A, Ben-Itzhak O, Nazemi KJ, Pines M . Myofibroblastin pulmonary and brain metastases of alveolar soft-part sarcoma: a novel target for treatment. Neoplasia 2008; 10: 940–948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Xinarianos G, McRonald FE, Risk JM, Bowers NL, Nikolaidis G, Field JK et al. Frequent genetic and epigenetic abnormalities contribute to the deregulation of cytoglobin in non-small cell lung cancer. Hum Mol Genet 2006; 15: 2038–2044.

    Article  CAS  PubMed  Google Scholar 

  70. Shaw RJ, Omar MM, Rokadiya S, Kogera FA, Lowe D, Hall GL et al. Cytoglobin is upregulated by tumour hypoxia and silenced by promoter hypermethylation in head and neck cancer. Br J Cancer 2009; 101: 139–144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Oleksiewicz U, Liloglou T, Tasopoulou KM, Daskoulidou N, Bryan J, Gosney JR et al. Cytoglobin has bimodal: tumour suppressor and oncogene functions in lung cancer cell lines. Hum Mol Genet 2013; 22: 3207–3217.

    Article  CAS  PubMed  Google Scholar 

  72. Gorr TA, Wichmann D, Pilarsky C, Theurillat JP, Fabrizius A, Laufs T et al. Old proteins—new locations: myoglobin, haemoglobin, neuroglobin and cytoglobin in solid tumours and cancer cells. Acta Physiol 2011; 202: 563–581.

    Article  CAS  Google Scholar 

  73. Emara M, Turner AR, Allalunis-Turner J . Hypoxic regulation of cytoglobin and neuroglobin expression in human normal and tumor tissues. Cancer Cell Int 2010; 10: 33–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Presneau N, Dewar K, Forgetta V, Provencher D, Mes-Masson AM, Tonin PN . Loss of heterozygosity and transcriptome analyses of a 1.2 Mb candidate ovarian cancer tumor suppressor locus region at 17q25.1-q25.2. Mol Carcinog 2005; 43: 141–154.

    Article  CAS  PubMed  Google Scholar 

  75. McRonald FE, Liloglou T, Xinarianos G, Hill L, Rowbottom L, Langan JE et al. Down-regulation of the cytoglobin gene, located on 17q25, in tylosis with oesophageal cancer (TOC): evidence for trans-allele repression. Hum Mol Genet 2006; 15: 1271–1277.

    Article  CAS  PubMed  Google Scholar 

  76. Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B . A model for p53-induced apoptosis. Nature 1997; 389: 300–305.

    Article  CAS  PubMed  Google Scholar 

  77. Rivera A, Maxwell SA . The p53-induced gene-6 (proline oxidase) mediates apoptosis through a calcineurin-dependent pathway. J Biol Chem 2005; 280: 29346–29354.

    Article  CAS  PubMed  Google Scholar 

  78. Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM . The antioxidant function of the p53 tumor suppressor. Nat Med 2005; 11: 1306–1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pinton P, Rimessi A, Marchi S, Orsini F, Migliaccio E, Giorgio M et al. Protein kinase C beta and prolyl isomerase 1 regulate mitochondrial effects of the life-span determinant p66(Shc). Science 2007; 315: 659–663.

    Article  CAS  PubMed  Google Scholar 

  80. Drane P, Bravard A, Bouvard E, May E . Reciprocal down-regulation of p53 and sod2 gene expression—implication in p53 mediated apoptosis. Oncogene 2001; 20: 430–439.

    Article  CAS  PubMed  Google Scholar 

  81. Dhar SK, Xu Y, Chen Y, St. Clair DK . Specificity protein 1-dependent p53-mediated suppression of human manganese superoxide dismutase gene expression. J Biol Chem 2006; 281: 21698–21709.

    Article  CAS  PubMed  Google Scholar 

  82. Stambolsky P, Weisz L, Shats I, Klein Y, Goldfinger N, Oren M et al. Regulation of AIF expression by p53. Cell Death Differ 2006; 13: 2140–2149.

    Article  CAS  PubMed  Google Scholar 

  83. Bensaad K, Tsuruta A, Selak MA, Vidal MNC, Nakano K, Bartrons R et al. Tigar, a p53-inducible regulator of glycolysis and apoptosis. Cell 2006; 126: 107–120.

    Article  CAS  PubMed  Google Scholar 

  84. Berkers CR, Maddocks OD, Cheung EC, Mor I, Vousden KH . Metabolic regulation by p53 family members. Cell Metab 2013; 18: 617–633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kouwenhoven EN, van Heeringen SJ, Tena JJ, Oti M, Dutilh BE, Alonso ME et al. Genome-wide profiling of p63 DNA-binding sites identifies an element that regulates gene expression during limb development in the 7q21 SHFM1 locus. PLoS Genet 2010; 6: e1001065.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Celardo I, Grespi F, Antonov A, Bernassola F, Garabadgiu AV, Melino G et al. Caspase-1 is a novel target of p63 in tumor suppression. Cell Death Dis 2013; 4: e645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Amelio I, Amelio I, Markert EK, Rufini A, Antonov AV, Sayan BS et al. p73 regulates serine biosynthesis in cancer. Oncogene 2014; 33: 5039–5046.

    Article  CAS  PubMed  Google Scholar 

  88. Guo XM, Philipsen S, Tan-Un KC . Characterization of human cytoglobin gene promoter region. Biochim Biophys Acta 2006; 1759: 208–215.

    Article  CAS  PubMed  Google Scholar 

  89. Browne G, Cipollone R, Lena AM, Serra V, Zhou H, Van Bokhoven H et al. Differential altered stability and transcriptional activity of ΔNp63. J Cell Sci 2011; 124: 2200–2207.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was mainly supported by the AIRC grant (IG13387) to EC and Min. Salute (Ric oncol 26/07) and IDI-IRCCS (RF08 c.15, RF07 c.57) to GM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G Melino or E Candi.

Ethics declarations

Competing interests

EC and GM declare a collaboration with Chanel PB on epidermal microRNA regulation. The other authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latina, A., Viticchiè, G., Lena, A. et al. ΔNp63 targets cytoglobin to inhibit oxidative stress-induced apoptosis in keratinocytes and lung cancer. Oncogene 35, 1493–1503 (2016). https://doi.org/10.1038/onc.2015.222

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.222

This article is cited by

Search

Quick links