Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Deficiency in WT1-targeting microRNA-125a leads to myeloid malignancies and urogenital abnormalities

Abstract

The Wilms’ tumor gene WT1 is overexpressed in leukemia and solid tumors and has an oncogenic role in leukemogenesis and tumorigenesis. However, precise regulatory mechanisms of WT1 overexpression remain undetermined. In the present study, microRNA-125a (miR-125a) was identified as a miRNA that suppressed WT1 expression via binding to the WT1-3’UTR. MiR-125a knockout mice overexpressed WT1, developed myeloproliferative disorder (MPD) characterized by expansion of myeloid cells in bone marrow (BM), spleen and peripheral blood, and displayed urogenital abnormalities. Silencing of WT1 expression in hematopoietic stem/progenitor cells of miR-125a knockout MPD mice by short-hairpin RNA inhibited myeloid colony formation in vitro. Furthermore, the incidence and severity of MPD were lower in miR-125a (−/−) mice than in miR-125a (+/−) mice, indicating the operation of compensatory mechanisms for the complete loss of miR-125a. To elucidate the compensatory mechanisms, miRNA array was performed. MiR-486 was occasionally induced in compete loss of miR-125a and inhibited WT1 expression instead of miR-125a, resulting in the cancellation of MPD occurrence. These results showed for the first time the post-transcriptional regulatory mechanisms of WT1 by both miR-125a and miR-486 and should contribute to the elucidation of mechanisms of normal hematopoiesis and kidney development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Call KM, Glaser T, Ito CY, Buckler AJ, Pelletier J, Haber DA et al. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell 1990; 60: 509–520.

    Article  CAS  PubMed  Google Scholar 

  2. Inoue K, Sugiyama H, Ogawa H, Nakagawa M, Yamagami T, Miwa H et al. WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia. Blood 1994; 84: 3071–3079.

    CAS  PubMed  Google Scholar 

  3. Oji Y, Miyoshi S, Maeda H, Hayashi S, Tamaki H, Nakatsuka S et al. Overexpression of the Wilms' tumor gene WT1 in de novo lung cancers. Int J Cancer 2002; 100: 297–303.

    Article  CAS  PubMed  Google Scholar 

  4. Oji Y, Miyoshi Y, Koga S, Nakano Y, Ando A, Nakatsuka S et al. Overexpression of the Wilms' tumor gene WT1 in primary thyroid cancer. Cancer Sci 2003; 94: 606–611.

    Article  CAS  PubMed  Google Scholar 

  5. Loeb DM, Evron E, Patel CB, Sharma PM, Niranjan B, Buluwela L et al. Wilms' tumor suppressor gene (WT1) is expressed in primary breast tumors despite tumor-specific promoter methylation. Cancer Res 2001; 61: 921–925.

    CAS  PubMed  Google Scholar 

  6. Miyoshi Y, Ando A, Egawa C, Taguchi T, Tamaki Y, Tamaki H et al. High expression of Wilms' tumor suppressor gene predicts poor prognosis in breast cancer patients. Clin Cancer Res 2002; 8: 1167–1171.

    CAS  PubMed  Google Scholar 

  7. Oji Y, Yano M, Nakano Y, Abeno S, Nakatsuka S, Ikeba A et al. Overexpression of the Wilms' tumor gene WT1 in esophageal cancer. Anticancer Res 2004; 24: 3103–3108.

    CAS  PubMed  Google Scholar 

  8. Oji Y, Yamamoto H, Nomura M, Nakano Y, Ikeba A, Nakatsuka S et al. Overexpression of the Wilms' tumor gene WT1 in colorectal adenocarcinoma. Cancer Sci 2003; 94: 712–717.

    Article  CAS  PubMed  Google Scholar 

  9. Oji Y, Nakamori S, Fujikawa M, Nakatsuka S, Yokota A, Tatsumi N et al. Overexpression of the Wilms' tumor gene WT1 in pancreatic ductal adenocarcinoma. Cancer Sci 2004; 95: 583–587.

    Article  CAS  PubMed  Google Scholar 

  10. Oji Y, Suzuki T, Nakano Y, Maruno M, Nakatsuka S, Jomgeow T et al. Overexpression of the Wilms' tumor gene WT1 in primary astrocytic tumors. Cancer Sci 2004; 95: 822–827.

    Article  CAS  PubMed  Google Scholar 

  11. Sotobori T, Ueda T, Oji Y, Naka N, Araki N, Myoui A et al. Prognostic significance of Wilms tumor gene (WT1) mRNA expression in soft tissue sarcoma. Cancer 2006; 106: 2233–2240.

    Article  CAS  PubMed  Google Scholar 

  12. Harada Y, Nonomura N, Nishimura K, Tamaki H, Takahara S, Miki T et al. WT1 Gene Expression in Human Testicular Germ-Cell Tumors. Mol Urol 1999; 3: 357–364.

    CAS  PubMed  Google Scholar 

  13. Oji Y, Inohara H, Nakazawa M, Nakano Y, Akahani S, Nakatsuka S et al. Overexpression of the Wilms' tumor gene WT1 in head and neck squamous cell carcinoma. Cancer Sci 2003; 94: 523–529.

    Article  CAS  PubMed  Google Scholar 

  14. Ito K, Oji Y, Tatsumi N, Shimizu S, Kanai Y, Nakazawa T et al. Antiapoptotic function of 17AA(+)WT1 (Wilms' tumor gene) isoforms on the intrinsic apoptosis pathway. Oncogene 2006; 25: 4217–4229.

    Article  CAS  PubMed  Google Scholar 

  15. Jomgeow T, Oji Y, Tsuji N, Ikeda Y, Ito K, Tsuda A et al. Wilms' tumor gene WT1 17AA(-)/KTS(-) isoform induces morphological changes and promotes cell migration and invasion in vitro. Cancer Sci 2006; 97: 259–270.

    Article  CAS  PubMed  Google Scholar 

  16. Yamagami T, Ogawa H, Tamaki H, Oji Y, Soma T, Oka Y et al. Suppression of Wilms' tumor gene (WT1) expression induces G2/M arrest in leukemic cells. Leuk Res 1998; 22: 383–384.

    Article  CAS  PubMed  Google Scholar 

  17. Algar EM, Khromykh T, Smith SI, Blackburn DM, Bryson GJ, Smith PJ . A WT1 antisense oligonucleotide inhibits proliferation and induces apoptosis in myeloid leukaemia cell lines. Oncogene 1996; 12: 1005–1014.

    CAS  PubMed  Google Scholar 

  18. Oji Y, Ogawa H, Tamaki H, Oka Y, Tsuboi A, Kim EH et al. Expression of the Wilms' tumor gene WT1 in solid tumors and its involvement in tumor cell growth. Jpn J Cancer Res 1999; 90: 194–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tatsumi N, Oji Y, Tsuji N, Tsuda A, Higashio M, Aoyagi S et al. Wilms' tumor gene WT1-shRNA as a potent apoptosis-inducing agent for solid tumors. Int J Oncol 2008; 32: 701–711.

    CAS  PubMed  Google Scholar 

  20. Nishida S, Hosen N, Shirakata T, Kanato K, Yanagihara M, Nakatsuka S et al. AML1-ETO rapidly induces acute myeloblastic leukemia in cooperation with the Wilms tumor gene, WT1. Blood 2006; 107: 3303–3312.

    Article  CAS  PubMed  Google Scholar 

  21. Hosen N, Sonoda Y, Oji Y, Kimura T, Minamiguchi H, Tamaki H et al. Very low frequencies of human normal CD34+ haematopoietic progenitor cells express the Wilms’ tumour gene WT1 at levels similar to those in leukaemia cells. Br J Haematol 2002; 116: 409–420.

    Article  CAS  PubMed  Google Scholar 

  22. Kanato K, Hosen N, Yanagihara M, Nakagata N, Shirakata T, Nakazawa T et al. The Wilms’ tumor gene WT1 is a common marker of progenitor cells in fetal liver. Biochem Biophys Res Commun 2005; 326: 836–843.

    Article  CAS  PubMed  Google Scholar 

  23. Wagner KD, Wagner N, Vidal VP, Schley G, Wilhelm D, Schedl A et al. The Wilms’ tumor gene Wt1 is required for normal development of the retina. EMBO J 2002; 21: 1398–1405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Perez-Pomares JM, Phelps A, Sedmerova M, Carmona R, Gonzalez-Iriarte M, Munoz-Chapuli R et al. Experimental studies on the spatiotemporal expression of WT1 and RALDH2 in the embryonic avian heart: a model for the regulation of myocardial and valvuloseptal development by epicardially derived cells (EPDCs). Dev Biol 2002; 247: 307–326.

    Article  CAS  PubMed  Google Scholar 

  25. Alberta JA, Springett GM, Rayburn H, Natoli TA, Loring J, Kreidberg JA et al. Role of the WT1 tumor suppressor in murine hematopoiesis. Blood 2003; 101: 2570–2574.

    Article  CAS  PubMed  Google Scholar 

  26. Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D et al. WT-1 is required for early kidney development. Cell 1993; 74: 679–691.

    Article  CAS  PubMed  Google Scholar 

  27. Moore AW, McInnes L, Kreidberg J, Hastie ND, Schedl A . YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis. Development 1999; 126: 1845–1857.

    CAS  PubMed  Google Scholar 

  28. Martínez-Estrada OM, Lettice LA Essafi A, Guadix JA, Slight J, Velecela V et al. Wt1 is required for cardiovascular progenitor cell formation through transcriptional control of Snail and E-cadherin. Nat Genet 2010; 42: 89–93.

    Article  PubMed  Google Scholar 

  29. Chau YY, Brownstein D, Mjoseng H, Lee WC, Buza-Vidas N, Nerlov C et al. Acute multiple organ failure in adult mice deleted for the developmental regulator Wt1. PLoS Genet 2011; 7: e1002404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Scharnhorst V, van der Eb AJ, Jochemsen AG . WT1 proteins: functions in growth and differentiation. Gene 2001; 273: 141–161.

    Article  CAS  PubMed  Google Scholar 

  31. Roberts SG . Transcriptional regulation by WT1 in development. Curr Opin Genet Dev 2005; 15: 542–547.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang X, Xing G, Fraizer GC, Saunders GF . Transactivation of an intronic hematopoietic-specific enhancer of the human Wilms' tumor 1 gene by GATA-1 and c-Myb. J Biol Chem 1997; 272: 29272–29280.

    Article  CAS  PubMed  Google Scholar 

  33. Discenza MT, Vaz D, Hassell JA, Pelletier J . Activation of the WT1 tumor suppressor gene promoter by Pea3. FEBS Lett 2004; 560: 183–191.

    Article  CAS  PubMed  Google Scholar 

  34. Dehbi M, Ghahremani M, Lechner M, Dressler G, Pelletier J . The paired-box transcription factor, PAX2, positively modulates expression of the Wilms' tumor suppressor gene (WT1). Oncogene 1996; 13: 447–453.

    CAS  PubMed  Google Scholar 

  35. Dehbi M, Pelletier J . PAX8-mediated activation of the wt1 tumor suppressor gene. EMBO J 1996; 15: 4297–4306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cohen HT, Bossone SA, Zhu G, McDonald GA, Sukhatme VP . Sp1 is a critical regulator of the Wilms' tumor-1 gene. J Biol Chem 1997; 272: 2901–2913.

    Article  CAS  PubMed  Google Scholar 

  37. Sharma PM, Bowman M, Madden SL, Rauscher FJ 3rd, Sukumar S . RNA editing in the Wilms' tumor susceptibility gene, WT1. Genes Dev 1994; 8: 720–731.

    Article  CAS  PubMed  Google Scholar 

  38. Gao SM, Xing CY, Chen CQ, Lin SS, Dong PH, Yu FJ . miR-15a and miR-16-1 inhibit the proliferation of leukemic cells by down-regulating WT1 protein level. J Exp Clin Cancer Res 2011; 30: 110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gebeshuber CA, Kornauth C, Dong L, Sierig R, Seibler J, Reiss M et al. Focal segmental glomerulosclerosis is induced by microRNA-193a and its downregulation of WT1. Nat Med 2013; 19: 481–487.

    Article  CAS  PubMed  Google Scholar 

  40. Han Y, San-Marina S, Liu J, Minden MD . Transcriptional activation of c-myc proto-oncogene by WT1 protein. Oncogene 2004; 23: 6933–6941.

    Article  CAS  PubMed  Google Scholar 

  41. Reavie L, Buckley SM, Loizou E, Takeishi S, Aranda-Orgilles B, Ndiaye-Lobry D et al. Regulation of c-Myc ubiquitination controls chronic myelogenous leukemia initiation and progression. Cancer Cell 2013; 23: 362–375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Moshier JA, Skunca M, Wu W, Boppana SM, Rauscher FJ III, Dosescu J . Regulation of ornithine decarboxylase gene expression by the Wilms' tumor suppressor WT1. Nucleic Acids Res 1996; 24: 1149–1157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Funakoshi-Tago M, Sumi K, Kasahara T, Tago K . Critical roles of Myc-ODC axis in the cellular transformation induced by myeloproliferative neoplasm-associated JAK2 V617F mutant. PLoS One 2013; 8: e52844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mayo MW, Wang CY, Drouin SS, Madrid LV, Marshall AF, Reed JC et al. WT1 modulates apoptosis by transcriptionally upregulating the bcl-2 proto-oncogene. EMBO J 1999; 18: 3990–4003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Domen J, Cheshier SH, Weissman IL . The role of apoptosis in the regulation of hematopoietic stem cells: overexpression of Bcl-2 increases both their number and repopulation potential. J Exp Med 2000; 191: 253–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vidovic K, Svensson E, Nilsson B, Thuresson B, Olofsson T, Lennartsson A et al. Wilms' tumor gene 1 protein represses the expression of the tumor suppressor interferon regulatory factor 8 in human hematopoietic progenitors and in leukemic cells. Leukemia 2010; 24: 992–1000.

    Article  CAS  PubMed  Google Scholar 

  47. Holtschke T, Löhler J, Kanno Y, Fehr T, Giese N, Rosenbauer F et al. Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell 1996; 87: 307–317.

    Article  CAS  PubMed  Google Scholar 

  48. Klein U, Lia M, Crespo M, Siegel R, Shen Q, Mo T et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell 2010; 17: 28–40.

    Article  CAS  PubMed  Google Scholar 

  49. Guo S, Lu J, Schlanger R, Zhang H, Wang JY, Fox MC et al. MicroRNA miR-125a controls hematopoietic stem cell number. Proc Natl Acad Sci USA 2010; 107: 14229–14234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhao X, Tang Y, Qu B, Cui H, Wang S, Wang L et al. MicroRNA-125a contributes to elevated inflammatory chemokine RANTES levels via targeting KLF13 in systemic lupus erythematosus. Arthritis Rheum 2010; 62: 3425–3435.

    Article  CAS  PubMed  Google Scholar 

  51. Wu S, Huang S, Ding J, Zhao Y, Liang L, Liu T et al. Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3' untranslated region. Oncogene 2010; 29: 2302–2308.

    Article  CAS  PubMed  Google Scholar 

  52. Downing JR . The core-binding factor leukemias: lessons learned from murine models. Curr Opin Genet Dev 2003; 13: 48–54.

    Article  CAS  PubMed  Google Scholar 

  53. Gao F, Maiti S, Alam N, Zhang Z, Deng JM, Behringer RR et al. The Wilms tumor gene, Wt1, is required for Sox9 expression and maintenance of tubular architecture in the developing testis. Proc Natl Acad Sci USA 2006; 103: 11987–11992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Alemdehy MF, Erkeland SJ . Stop the dicing in hematopoiesis. Cell Cycle 2012; 11: 2799–2807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kumar MS, Pester RE, Chen CY, Lane K, Chin C, Lu J et al. Dicer1 functions as a haploinsufficient tumor suppressor. Genes Dev 2009; 23: 2700–2704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bao J, Li D, Wang L, Wu J, Hu Y, Wang Z et al. MicroRNA-449 and MicroRNA-34b/c Function Redundantly in Murine Testes by Targeting E2F Transcription Factor-Retinoblastoma Protein (E2F-pRb) Pathway. J Biol Chem 2012; 287: 21686–21698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 2008; 132: 875–886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Manikandan M, Munirajan AK . Single nucleotide polymorphisms in microRNA binding sites of oncogenes: implications in cancer and pharmacogenomics. OMICS 2014; 18: 142–154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Preskill C, Weidhaas JB . SNPs in microRNA binding sites as prognostic and predictive cancer biomarkers. Crit Rev Oncog 2013; 18: 327–340.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Grant-in-Aid from the Ministry of Education, Science, Sports, Culture and Technology, Japan, and the Ministry of Health, Labour, and Welfare, Japan. We thank Yoko Esaki and Saki Nishioka of NPO Biotechnology Research and Development for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Tatsumi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tatsumi, N., Hojo, N., Yamada, O. et al. Deficiency in WT1-targeting microRNA-125a leads to myeloid malignancies and urogenital abnormalities. Oncogene 35, 1003–1014 (2016). https://doi.org/10.1038/onc.2015.154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.154

This article is cited by

Search

Quick links